• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mechanism regulating species coexistence in a subtropical forest revealed

Bioengineer by Bioengineer
October 9, 2019
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: CHEN Lei


For over a century, ecologists have questioned how the extraordinarily high number of tree species can coexist in tropical forests. In the early 1970s, Daniel Janzen and Joseph Connell independently came up with the pathogen-driven Janzen-Connell hypothesis to explain the astonishing plant diversity we observe. They proposed that specialist natural enemies could accumulate near dense patches of their hosts and attack seeds and seedlings of the same species, ultimately lending an advantage to locally rare species – a phenomenon known as conspecific negative density dependence.

A large number of studies have provided compelling evidence for the diversity-promoting effects of pathogens in a wide range of tropical forests. However, the collective importance of specialist natural enemies in determining the diversity observed in subtropical communities had remained unclear until recently.

Subtropical evergreen broad-leaved forests of China are among the most species-rich areas in the world, containing more than 10,000 vascular plant species. One of the striking differences between subtropical and tropical forests is that tropical forests are usually dominated by arbuscular mycorrhizal (AM) species, whereas subtropical forests are usually dominated by AM trees when considering species number, but by ectomycorrhizal (EcM) trees when considering basal area.

A research group led by Prof. MA Keping from the Institute of Botany of the Chinese Academy of Sciences, in collaboration with scientists from the University of Maryland, College Park and the Institute of Microbiology, have now revealed the underlying mechanism regulating species coexistence in a subtropical forest.

The research, entitled “Differential soil fungus accumulation and density dependence of trees in a subtropical forest,” was published in Science on October 4.

In the study, the researchers point out that species’ mycorrhizal types mediate tree-neighborhood interactions at the community level, and much of the interspecific variation in local tree interactions is explained by how tree species differ in their fungal density accumulation rates as they grow.

Species with higher accumulation rates of pathogenic fungi suffered more from conspecific neighbors, whereas species with lower conspecific inhibition had higher accumulation rates of EcM fungi, suggesting that mutualistic and pathogenic fungi play important, but opposing, roles on species coexistence.

“The findings provide an extra dimension to the Janzen-Connell hypothesis by showing that pathogen accumulation rates may play a key role in driving the strength of tree interactions, but EcM fungi may overrule them. Models of tree diversity should incorporate the role of both plant pathogens and mutualists,” says CHEN Lei, an assistant professor of ecology and first author of the new study.

These results provide important clues to clarifying the mechanism underlying the latitudinal gradients in tree interaction and global biodiversity patterns in natural forests.

###

This is another important achievement in understanding the diversity and functions of subtropical forests since publication of a study concerning the impact of tree diversity on forest productivity (Huang et al., Science, 2018) by Prof. MA Keping and his colleagues.

Media Contact
MA Keping
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.aau1361

Tags: BiologyForestryPlant Sciences
Share15Tweet10Share3ShareShareShare2

Related Posts

blank

Processing Environments Shape Food-Related Antibiotic Resistome

July 30, 2025
Multi-Proteomic Analysis Reveals Host Risks in VZV

Multi-Proteomic Analysis Reveals Host Risks in VZV

July 30, 2025

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Processing Environments Shape Food-Related Antibiotic Resistome

Multi-Proteomic Analysis Reveals Host Risks in VZV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.