• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Measuring gamma-ray bursts’ hidden energy unearths clues to the evolution of the universe

Bioengineer by Bioengineer
December 19, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gamma-ray bursts are the most luminous explosions in the universe, allowing astrologists to observe intense gamma rays in short durations. Gamma-ray bursts are classified as either short or long, with long gamma-ray bursts being the result of massive stars dying out. Hence why they provide hidden clues about the evolution of the universe.

Figure 1

Credit: Urata et al./Yu-Sin Huang/MITOS Science CO., LTD.

Gamma-ray bursts are the most luminous explosions in the universe, allowing astrologists to observe intense gamma rays in short durations. Gamma-ray bursts are classified as either short or long, with long gamma-ray bursts being the result of massive stars dying out. Hence why they provide hidden clues about the evolution of the universe.

Gamma-ray bursts emit gamma rays as well as radio waves, optical lights, and X-rays. When the conversion of explosion energy to emitted energy, i.e., the conversion efficiency, is high, the total explosion energy can be calculated by simply adding all the emitted energy. But when the conversion efficiency is low or unknown, measuring the emitted energy alone is not enough.

Now, a team of astrophysicists has succeeded in measuring a gamma-ray burst’s hidden energy by utilizing light polarization. The team was led by Dr. Yuji Urata from the National Central University in Taiwan and MITOS Science CO., LTD and Professor Kenji Toma from Tohoku University’s Frontier Research Institute for Interdisciplinary Sciences (FRIS).

Details of their findings were published in the journal Nature Astronomy on December 8, 2022.

When an electromagnetic wave is polarized, it means that the oscillation of that wave flows in one direction. While light emitted from stars is not polarized, the reflection of that light is. Many everyday items such as sunglasses and light shields utilize polarization to block out the glare of lights traveling in a uniform direction.

Measuring the degree of polarization is referred to as polarimetry. In astrophysical observations, measuring a celestial object’s polarimetry is not as easy as measuring its brightness. But it offers valuable information on the physical conditions of objects.

The team looked at a gamma-ray burst which occurred on December 21, 2019 (GRB191221B). Using the Very Large Telescope of the European Southern Observatory and Atacama Large Millimeter/submillimeter Array – some of the world’s most advanced optical and radio telescopes – they calculated the polarimetry of fast-fading emissions from GRB191221B. They then successfully measured the optical and radio polarizations simultaneously, finding the radio polarization degree to be significantly lower than the optical one.

“This difference in polarization at the two wavelengths reveals detailed physical conditions of the gamma-ray burst’s emission region,” said Toma. “In particular, it allowed us to measure the previously unmeasurable hidden energy.”

When accounting for the hidden energy, the team revealed that the total energy was about 3.5 times bigger than previous estimates.

With the explosion energy representing the gravitational energy of the progenitor star, being able to measure this figure has important ramifications for determining stars’ masses.

“Knowing the measurements of the progenitor star’s true masses will help in understanding the evolutionary history of the universe,” added Toma. “The first stars in the universe could be discovered if we can detect their long gamma-ray bursts.”



Journal

Nature Astronomy

DOI

10.1038/s41550-022-01832-7

Article Title

Simultaneous radio and optical polarimetry of GRB 191221B afterglow

Article Publication Date

8-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Jeffrey Rimer, University of Houston Abraham E. Dukler Professor of Chemical Engineering

During dolphin research, UH engineer discovers new method to possibly improve pharmaceuticals

February 3, 2023
Dr Egle Klumbyte

Researchers: Energy-efficient construction materials work better in colder climates

February 3, 2023

The power of theory: Finding an efficient electrocatalyst for hydrogen peroxide synthesis

February 3, 2023

Robots and A.I. team up to discover highly selective catalysts

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In