• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Measuring gamma-ray bursts’ hidden energy unearths clues to the evolution of the universe

Bioengineer by Bioengineer
December 19, 2022
in Chemistry
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gamma-ray bursts are the most luminous explosions in the universe, allowing astrologists to observe intense gamma rays in short durations. Gamma-ray bursts are classified as either short or long, with long gamma-ray bursts being the result of massive stars dying out. Hence why they provide hidden clues about the evolution of the universe.

Figure 1

Credit: Urata et al./Yu-Sin Huang/MITOS Science CO., LTD.

Gamma-ray bursts are the most luminous explosions in the universe, allowing astrologists to observe intense gamma rays in short durations. Gamma-ray bursts are classified as either short or long, with long gamma-ray bursts being the result of massive stars dying out. Hence why they provide hidden clues about the evolution of the universe.

Gamma-ray bursts emit gamma rays as well as radio waves, optical lights, and X-rays. When the conversion of explosion energy to emitted energy, i.e., the conversion efficiency, is high, the total explosion energy can be calculated by simply adding all the emitted energy. But when the conversion efficiency is low or unknown, measuring the emitted energy alone is not enough.

Now, a team of astrophysicists has succeeded in measuring a gamma-ray burst’s hidden energy by utilizing light polarization. The team was led by Dr. Yuji Urata from the National Central University in Taiwan and MITOS Science CO., LTD and Professor Kenji Toma from Tohoku University’s Frontier Research Institute for Interdisciplinary Sciences (FRIS).

Details of their findings were published in the journal Nature Astronomy on December 8, 2022.

When an electromagnetic wave is polarized, it means that the oscillation of that wave flows in one direction. While light emitted from stars is not polarized, the reflection of that light is. Many everyday items such as sunglasses and light shields utilize polarization to block out the glare of lights traveling in a uniform direction.

Measuring the degree of polarization is referred to as polarimetry. In astrophysical observations, measuring a celestial object’s polarimetry is not as easy as measuring its brightness. But it offers valuable information on the physical conditions of objects.

The team looked at a gamma-ray burst which occurred on December 21, 2019 (GRB191221B). Using the Very Large Telescope of the European Southern Observatory and Atacama Large Millimeter/submillimeter Array – some of the world’s most advanced optical and radio telescopes – they calculated the polarimetry of fast-fading emissions from GRB191221B. They then successfully measured the optical and radio polarizations simultaneously, finding the radio polarization degree to be significantly lower than the optical one.

“This difference in polarization at the two wavelengths reveals detailed physical conditions of the gamma-ray burst’s emission region,” said Toma. “In particular, it allowed us to measure the previously unmeasurable hidden energy.”

When accounting for the hidden energy, the team revealed that the total energy was about 3.5 times bigger than previous estimates.

With the explosion energy representing the gravitational energy of the progenitor star, being able to measure this figure has important ramifications for determining stars’ masses.

“Knowing the measurements of the progenitor star’s true masses will help in understanding the evolutionary history of the universe,” added Toma. “The first stars in the universe could be discovered if we can detect their long gamma-ray bursts.”



Journal

Nature Astronomy

DOI

10.1038/s41550-022-01832-7

Article Title

Simultaneous radio and optical polarimetry of GRB 191221B afterglow

Article Publication Date

8-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Electrifying Industrial Hydrogen Peroxide via Soft Interfaces

Electrifying Industrial Hydrogen Peroxide via Soft Interfaces

September 23, 2025
blank

Metalloligand-Driven Cobalt Catalyst Achieves Anti-Markovnikov Hydrosilylation of Alkynes Using Tertiary Silanes

September 22, 2025

SwRI Leads IMAP Payload Development for Upcoming Mission to Map Heliosphere Boundary

September 22, 2025

Radical C–C Coupling Boosts CO₂ Electroreduction

September 22, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metformin Combinations Show Promise in Lung Cancer

sRAGE Levels in Obese Adolescents with Metabolic Syndrome

Creating Liquid Bio-Fertilizer from Citrus, Bananas, and Eggshells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.