• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mayo Clinic researchers develop more efficient system to reprogram stem cells

Bioengineer by Bioengineer
February 12, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ROCHESTER, Minn. — Induced pluripotent stem cells, the workhorse of many regenerative medicine projects, start out as differentiated cells that are reprogrammed to pluripotent stem cells by exposure to a complex set of genetic cocktails. Mayo researchers now report that using the measles virus vector; they’ve trimmed that multi-vector process with four reprogramming factors down to a single “one cycle” vector process. They say the process is safe, stable, faster and usable for clinical translation. The findings appear in the journal Gene Therapy.

“If we’re going to successfully use reprogrammed stem cells to treat patients in the clinic, we need to ensure that they are safe and effective, that is, not prone to the risk of mutation and potential tumors,” says Patricia Devaux, Ph.D., Mayo Clinic molecular scientist and senior author of the article. “The measles virus vector has long been used safely at Mayo for treating cancer, so it is very safe. Now that we’ve combined a multiple-vectors process into one, it’s efficient as well.”

Previously, the four reprogramming factors – proteins OCT4, SOX2, KLF4 and cMYC – had to be introduce individually to the cells to induce them to change in the proper fashion for the desired outcome. That led to potential partially reprogrammed cells, as not all cells received the four factors required for reprogramming. The new Mayo process combines those factors within the measles virus vector so the process happens in one step and all targeted cells have the potential to reprogram. It should be noted that this measles virus is attenuated, that is all dangerous aspects of the virus have been removed, as they are in a vaccine, and the virus becomes a vector or carrier for other genetic material. The measles virus vaccine strain is often used today because it is safe, fast and targetable.

The researchers say a clinically applicable reprogramming system free from genomic modifications will go a long way to making widespread use of induced pluripotent stem cell therapies feasible. These are therapies in which an individual’s own cells are reprogrammed can then be use to work in a particular diseased organ, thus avoiding risk of cell rejection.

###

Additional co-authors of the article include first author Qi Wang, Alanna Vossen, and Yasuhiro Ikeda, D.V.M., Ph.D., all of Mayo Clinic. The research was supported by the National Institutes of Health, including the National Institute of Allergy and Infectious Diseases, National Center for Advancing Translational Sciences, Mayo Clinic Graduate School of Biomedical Sciences, and Mayo Clinic Center for Regenerative Medicine.

About Mayo Clinic

Mayo Clinic is a nonprofit organization committed to clinical practice, education and research, providing expert, comprehensive care to everyone who needs healing. Learn more about Mayo Clinic. Visit the Mayo Clinic News Network.

Media Contact
Bob Nellis
[email protected]
507-284-5005

Related Journal Article

https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-researchers-develop-more-efficient-system-to-reprogram-stem-cells/
http://dx.doi.org/10.1038/s41434-019-0058-7

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.