• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Material manufacturing from particles takes a giant step forward

Bioengineer by Bioengineer
May 11, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team led by Aalto University has now shown another remarkable property of nanocelluloses: Their strong binding properties to form new materials with any particle

IMAGE

Credit: Bruno Mattos / Aalto University

Cohesion, the ability to keep things together, from the scale of nanoparticles to building sites is inherent to these nanofibrils, which can act as mortar to a nearly infinite type of particles as described in the study. The ability of nanocelluloses to bring together particles into cohesive materials is at the root of the study that links decades of research into nanoscience towards manufacturing.

The research reveals the universality of cohesion led by nanocelluloses

In a paper just published in Science Advances, the authors demonstrate how nanocellulose can organize itself in a multitude of different ways by assembling around particles to form highly robust materials. As pointed out by the main author, Dr Bruno Mattos, ‘This means that nanocelluloses induce high cohesion in particulate materials in a constant and controlled manner for all particles types. Because of such strong binding properties, such materials can now be built with predictable properties and therefore easily engineered’.

The moment anytime a material is created from particles, one has to first come up with a way to generate cohesion, which has been very particle dependent, ‘Using nanocellulose, we can overcome any particle dependency’, Mattos adds.

The universal potential of using nanocellulose as a binding component rises from their ability to form networks at the nanoscale, that adapt according to the given particles. Nanocelluloses bind micrometric particles, forming sheet-like structures, much like the paper-mâché as done in schools. Nanocellulose can also form tiny fishnets to entrap smaller particles, such as nanoparticles. Using nanocellulose, materials built from particles can be formed into any shape using an extremely easy and spontaneous process that only needs water. Importantly, the study describes how these nanofibers form network following precise scaling laws that facilitates their implementation.

This development is especially timely in the era of the nanotechnologies, where combining nanoparticles in larger structures is essential. As Dr Blaise Tardy points out, ‘New property limits and new functionalities are regularly showcased at the nanoscale, but implementation in the real world is rare. Unraveling the physics associated with the scaling of the cohesion of nanofibers is therefore a very exciting first step towards connecting laboratory findings with current manufacturing practices’. For any success, strong binding among the particles is needed, an opportunity herein offered by nanocellulose.

Nanofibers extracted from plants are used as universal binders for particles to form a variety of functional or structural materials

The team has shown a pathway to achieve scalability in the production of materials, from particles as small as 20 nm in diameter to those that are 20,000 larger. Furthermore, inert particles such as metallic nanoparticles to living entities such as baker’s yeast can be compounded. They can be of different shape, from 1D to 3D, hydrophilic or hydrophobic. They can comprise living microorganisms, functional metallic particles, or pollen, achieving new combinations and functionalities.

According to the team leader, Prof. Orlando Rojas, ‘This is a powerful and generic method, a new alternative that bridges colloidal science, material development and manufacturing’.

###

The study is a result of long-term international cooperation between Aalto University in Finland and the Brazilian Agricultural Research Corporation (Embrapa Florestas unit).

Media Contact
Bruno Mattos
[email protected]

Original Source

https://advances.sciencemag.org/content/6/19/eaaz7328/tab-article-info

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aaz7328

Tags: BiochemistryChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Resistance Training on Sarcopenic Seniors

November 5, 2025

New Study Reveals Disparities in Cancer Care Quality Among Incarcerated Individuals

November 5, 2025

Sex-Based Differences in Cognitive Response to PM2.5

November 5, 2025

LncPrep+96kb Regulates Inhibin B Secretion in Ovaries

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Resistance Training on Sarcopenic Seniors

New Study Reveals Disparities in Cancer Care Quality Among Incarcerated Individuals

AI Accelerates Antibody Design to Combat Emerging Viruses, According to New Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.