• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

MarrowQuant: A new digital-pathology tool

Bioengineer by Bioengineer
September 28, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Olaia Naveiras (EPFL)

The bone marrow is the soft tissue inside our bones. Its main role is to produce stem cells that will go on to become various cells of the blood, including white blood cells that fight infections, red blood cells that carry oxygen throughout the body, and platelets that control bleeding.

But the bone marrow also contains fat cells, the adipocytes, which were for a long time thought of as “passive fillers” of the marrow cavity. In recent years, however, bone marrow adipocytes have been shown to carry out a far more important role within the microenvironment of the bone marrow than initially thought.

The ratio between blood-forming cells (red color) and adipocytes (yellow color) is not constant. It changes with age, between different parts of the skeleton, and in various disease conditions or cancer treatments like chemo- and radio-therapy, which cause a condition called “bone marrow aplasia”. Changes in the cells’ ratio produce so-called “yellow-to-red” and “red-to-yellow” shifts in the color of the bone marrow, which is used for monitoring its condition.

This monitoring however is not entirely standardized, but relies on assessments by pathologists of histological images. In research, the relative health of bone marrow samples is also assessed qualitatively, through histological images. This subjectivity, although greatly compensated for, can still cause diagnostic and research limitations.

Publishing in Frontiers Endocrinology, scientists led by Olaia Naveiras at EPFL, introduce MarrowQuant, a new digital pathology software that can “read” histological images of bone marrow and “describe” them quantitatively, building maps based on values to complement the images. The potential applications of this approach can revolutionize digital histology.

Its code already uploaded on GitHub, MarrowQuant is described as “a user-friendly algorithm for the quantification of H&E bone marrow tissue biopsies in whole slide images.”

In the paper, the researchers use MarrowQuant to build the first-ever quantitative map of the heterogeneity of bone marrow throughout the skeleton of mice suffering from age-induced and radiation-induced aplasia.

“The work was a massive effort only possible thanks to the long and fruitful collaboration with EPFL’s BioImaging and Optics Platform [BIOP],” says Naveiras who is also the President of the International Bone Marrow Adiposity Society (BMAS).

MarrowQuant, uses the open-source software QuPath, and can systematically quantify multiple bone components in histological images without bias. It does this by discerning and quantifying the areas occupied by various parts of the bone marrow – including the vasculature and the bone itself.

One of the potential uses of MarrowQuant will be to re-examine historical sample collections of bone samples and even data from old clinical trials.

“MarrowQuant has already been extremely well received by the digital pathology community,” says Naveiras. “Moreover, the very selective Image Database Resource (IDR) has selected the associated dataset for publication, which includes over 300 annotated images.”

Professor Olaia Naveiras’ lab is part of EPFL’s Swiss Institute for Experimental Cancer Research (ISREC), situated in the School of Life Sciences.

###

Other contributors

EPFL Center for Biomedical Imaging,
Washington University
Lausanne University Hospital (CHUV)
University of Lausanne (UNIL)
University Hospital de Octubre
Harvard Medical School

Reference

Tratwal J, ID Bekri, C Boussema, N Kunz, R Sarkis, T Koliqi, S Rojas-Sutterlin, F Schyrr, DN Tavakol, V Campos, Scheller EL, R Sarro, C Bárcena, B Bisig, V Nardi, L de Leval, O Burri, O Naveiras. MarrowQuant in Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections. Front Endocrinol. DOI: 10.3389/fendo.2020.00480

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fendo.2020.00480

Tags: AgingBiomedical/Environmental/Chemical EngineeringcancerClinical TrialsComputer ScienceDiagnosticsMedicine/HealthSoftware Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective Presynaptic Inhibition Controls Fly Leg Proprioception

September 17, 2025

Innovative Implant Resets Blood Pressure Regulation Following Spinal Cord Injury

September 17, 2025

Researchers Uncover Four Key Immune Responses Triggered by COVID-19 Vaccines

September 17, 2025

Emerging Pathogens in Healthcare and Community Settings, Including Rising Sexually Transmitted Infections, Pose Serious Antimicrobial Resistance Threats

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

‘Molecular Glue’ Activates Immune System to Combat Neuroblastoma

New Study Reveals Lower Melanoma Rates Among Individuals with Multiple Tattoos

A Motor-Sparing Local Anesthetic: Is It Within Reach?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.