• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mapping out a transient atom

Bioengineer by Bioengineer
December 22, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new experiment provides better understanding of fundamental photo-induced processes with special importance for photocatalysis, photosynthesis and radiation damage

IMAGE

Credit: European XFEL

An international team from Germany, Sweden, Russia and the USA, led by scientists from European XFEL, has published the results of an experiment that could provide a blueprint for the analysis of transitions states in atoms and molecules. This would open up new opportunities to gain insights into important processes such as photocatalysis, elementary steps in photosynthesis and radiation damage.

It was the very first user experiment carried out at European XFEL’s Small Quantum System (SQS) instrument. The scientists used high-resolution electron spectroscopy to capture a snapshot of the short-lived transient state produced when X-rays punch a hole in the very core of the atomic electron cloud. The results of the study, which was carried out on neon atoms, are the starting point for the analysis of transient states and have been published in Physical Review X.

The extremely short-lived transient state of core-exited neon lasts for just 2.4 femtoseconds. To put a femtosecond in context: a femtosecond is to a second as a second is to about 31.71 million years. “The European XFEL allows us to use a high number of laser pulses per second and high pulse energy. This means we can bring a very high number of photons to the sample, which is crucial to probe such transient atomic states,” explains Tommaso Mazza, the lead author of the paper.

“We used intense X-ray pulses to first remove the electrons from the inner shell, or core, of a neon atom and then used a second photon from the same X-ray pulse to map out the ‘hollow’ atom,” says Mazza. “This is the first time scientists are able to obtain information of the electronic structure of this core-hole transient state by X-ray induced electron spectroscopy, and, more precisely, by measuring the energy of the electrons emitted after the excitation by the second photon while smoothly changing the wavelength of the X-ray pulses,” he adds.

Leading Scientist at SQS Michael Meyer underlines that the results of this paper along with a paper recently published in Science show the outstanding possibility to efficiently control and probe excitations of specific electronic subshells at the SQS instrument. “We can enable atomic or element specific excitations in molecular targets and independently investigate for each atom the influence on the photon-induced molecular dynamics,” he says. Targeting a specific atom in a molecule allows scientists to gain deeper understanding of the behavior of individual building blocks in the molecular assembly under intense irradiation.

The European XFEL in the Hamburg area is a large international X-ray laser facility. Its 27,000 X-ray flashes per second and their high brilliance open up completely new opportunities for science. Research groups from around the world are able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets.

###

Media Contact
Bernd Ebeling
 @europeanxfel

49-408-998-6921

Original Source

https://www.xfel.eu/news_and_events/news/index_eng.html?openDirectAnchor=1844&two_columns=0

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.10.041056

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Research Paves the Way for Greener, Faster Metal Production

August 21, 2025
Scientists Harness Electrochemistry to Enhance Nuclear Fusion Rates

Scientists Harness Electrochemistry to Enhance Nuclear Fusion Rates

August 21, 2025

Groundbreaking Supernova Discovery Unveils the Inner Secrets of a Dying Star

August 21, 2025

New “In and Out” Mechanism Uncovers How Carbon Dioxide Interacts with Water’s Surface

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

New Study Reveals 40% Decline in Leisure Reading Over Two Decades

TCF1 and LEF1 Sustain B-1a Cell Function

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.