• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mapping genes could improve cancer diagnosis

Bioengineer by Bioengineer
July 4, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Large-scale changes to the structure of the genome are often seen in cancer cells. Scientists at the Babraham Institute in Cambridge, UK, have found a way to detect these changes, which could enhance cancer diagnosis and aid the use of targeted treatments.

The report, in the journal Genome Biology, outlines a new application of a technique called Hi-C, which allows scientists to map how genetic material is arranged inside cells. By analysing this information, researchers can reliably identify major genetic changes that other methods may miss. This all comes at a lower cost than standard DNA sequencing methods.

Hi-C can detect chromosome rearrangements — where large sections of DNA are exchanged or moved between pieces of the genome called chromosomes — and also copy number variation — where genetic material gets copied or deleted. Both of these changes can have drastic effects on how the cell behaves.

First author on the paper, Dr Louise Harewood, said: "Chromosomal rearrangements are seen both in the general population and in the majority of cancers. Detection of chromosome rearrangements in patients can be troublesome and many can be missed. This can be detrimental, particularly in oncology where rearrangements can play both diagnostic and prognostic roles."

The scientists, led by Professor Peter Fraser, used Hi-C to examine the genome of cancer cells from six people with brain tumours. They were able to identify major genome changes, often with pinpoint accuracy. Uniquely, this approach allows doctors and scientists to study genetic changes in the wider context of the whole genome. Hi-C could become a powerful tool for understanding the complex genetic changes found in many cancers.

Professor Fraser, said: "Hi-C could play a pivotal role in the detection of chromosomal abnormalities and may aid the discovery of new fusion genes. The technique works with much lower quality samples than current techniques and has the additional advantage of being able to provide copy number information from the same data. This all comes at a significantly lower cost than standard methods that use DNA sequencing."

###

Media Contact

Jonathan Lawson
[email protected]
01-223-496-230
@babrahaminst

http://www.babraham.ac.uk/

http://www.babraham.ac.uk/admin/news/edit/526

Related Journal Article

http://dx.doi.org/10.1186/s13059-017-1253-8

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Microplastics: New Threat to Osteoarthritis Uncovered

October 11, 2025

How ECMO Cannulation Shapes Hemodynamics and Hemolysis Risks

October 11, 2025

Exploring Behavior Change Techniques in Mobile Apps

October 11, 2025

Revolutionizing Protein Detection with Switchable Aptamer Beacons

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1216 shares
    Share 486 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microplastics: New Threat to Osteoarthritis Uncovered

How ECMO Cannulation Shapes Hemodynamics and Hemolysis Risks

Aligned Carbon Nanotube Arrays Revolutionize Terahertz Transistors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.