• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, March 3, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Map of Shortcuts Between All Human Genes

Bioengineer by Bioengineer
March 19, 2013
in NEWS
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
 
The investigation, spearheaded by Yuval Itan, a postdoctoral fellow in the St. Giles Laboratory of Human Genetics of Infectious Diseases, has led to the creation of what he calls the human gene connectome, the full set of distances, routes (the genes on the way), and degrees of separation, between any two human genes. Itan, a computational biologist, says the computer program he developed to generate the connectome uses the same principles that GPS navigation devices use to plan a trip between two locations. The research is reported in the online early edition of the journal Proceedings of the National Academy of Sciences.
 
“High throughput genome sequencing technologies generate a plethora of data, which can take months to search through,” says Itan. “We believe the human gene connectome will provide a shortcut in the search for disease-causing mutations in monogenic diseases.”
 
Itan and his colleagues, including researchers from the Necker Hospital for Sick Children and the Pasteur Institute in Paris, and Ben-Gurion University in Israel, designed applications for the use of the human gene connectome. They began with a gene called TLR3, which is important for resistance to herpes simplex encephalitis, a life-threatening infection from the herpes virus that can cause significant brain damage in genetically susceptible children. Researchers in the St. Giles lab, headed by Jean-Laurent Casanova, previously showed that children with HSE have mutations in TLR3 or in genes that are closely functionally related to TLR3. In other words, these genes are located at a short biological distance from TLR3. As a result, novel herpes simplex encephalitis-causing genes are also expected to have a short biological distance from TLR3.
 
To test how well the human gene connectome could predict a disease-causing gene, the researchers sequenced exomes – all DNA of the genome that is coding for proteins – of two patients recently shown to carry mutations of a separate gene, TBK1.
“Each patient’s exome contained hundreds of genes with potentially morbid mutations,” says Itan. “The challenge was to detect the single disease-causing gene.” After sorting the genes by their predicted biological proximity to TLR3, Itan and his colleagues found TBK1 at the top of the list of genes in both patients. The researchers also used the TLR3 connectome – the set of all human genes sorted by their predicted distance from TLR3 – to successfully predict two other genes, EFGR and SRC, as part of the TLR3 pathway before they were experimentally validated, and applied other gene connectomes to detect Ehlers-Danlos syndrome and sensorineural hearing loss disease causing genes.
 
“The human gene connectome is, to the best of our knowledge, the only currently available prediction of the specific route and distance between any two human genes of interest, making it ideal to solve the needle in the haystack problem of detecting the single disease causing gene in a large set of potentially fatal genes,” says Itan. “This can now be performed by prioritizing any number of genes by their biological distance from genes that are already known to cause the disease.
 
“Approaches based on the human gene connectome have the potential to significantly increase the discovery of disease-causing genes for diseases that are genetically understood in some patients as well as for those that are not well studied. The human gene connectome should also progress the general field of human genetics by predicting the nature of unknown genetic mechanisms.”
 
Story Source:
 
The above story is reprinted from materials provided by Rockefeller University, via Newswise.
Tags: Human Genes
Share14Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Key steps discovered in production of critical immune cell

March 3, 2021
IMAGE

Researchers discover SARS-CoV-2 inhibitors

March 3, 2021

‘Target identified’: teaching a machine how to identify imperfections in 2D materials

March 3, 2021

Heat-free optical switch would enable optical quantum computing chips

March 3, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    661 shares
    Share 264 Tweet 165
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthInfectious/Emerging DiseasesBiologyChemistry/Physics/Materials SciencesTechnology/Engineering/Computer SciencePublic HealthEcology/EnvironmentClimate ChangeGeneticsCell BiologyMaterialscancer

Recent Posts

  • Key steps discovered in production of critical immune cell
  • Researchers discover SARS-CoV-2 inhibitors
  • ‘Target identified’: teaching a machine how to identify imperfections in 2D materials
  • Heat-free optical switch would enable optical quantum computing chips
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In