• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Malaria infection harms wild African apes

Bioengineer by Bioengineer
February 23, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Endangered great apes get malaria, just like humans. New evidence from wild bonobos shows us the infection harms them, too.

Bonobo

Credit: Sean M. Lee

Endangered great apes get malaria, just like humans. New evidence from wild bonobos shows us the infection harms them, too.

Malaria is a devastating disease caused by parasites transmitted through the bites of infected mosquitos. For humans, symptoms start out mild — fever, headache and chills — but malaria infection can be fatal within 24 hours. For apes, little is known about what malaria sickness looks like, or how deadly it is.

“We don’t yet have a good handle on the symptoms and mortality risk,” said Emily Wroblewski, an assistant professor of biological anthropology in Arts & Sciences at Washington University in St. Louis. “The number of infected animals in captivity that have exhibited disease symptoms has been limited. Sometimes they show symptoms like fever and other things that might be associated with infection, and sometimes not. And in the wild these things are very difficult to track.”

Scientists know that malaria infection is widespread across the geographic ranges of wild chimpanzees and gorillas (they know this because researchers detect parasite DNA in the apes’ feces). In fact, the African great apes harbor at least 12 different Plasmodium species, seven of which are closely related to the human parasite that causes about 95% of human deaths.

But a certain kind of ape, the bonobo, so far has escaped infection in all but two locations where researchers have studied them in the wild. Scientists can compare infected populations — where 38% of bonobos had detectable parasite DNA in their feces — to uninfected bonobos from 10 other sites across their natural range in the Democratic Republic of Congo.

This difference gives the researchers an opportunity to try to figure out some basic facts about how malaria impacts the health and mortality of great apes.

Wroblewski’s new research, published Feb. 23 in Nature Communications, finds that in areas where malaria infection has been detected, bonobos are more likely to have particular variants of an immune gene (Papa-B). The bonobo variants are very similar to a human variant (HLA-B*53) associated with protection from developing severe, and more deadly, disease. This suggests that similar immune defense mechanisms may be used in these two species.

“To us, this means that there is a selective advantage to individuals having these protective variants, because those individuals are more likely to survive their infection and reproduce, causing that variant to rise in frequency,” Wroblewski said.

“Seeing infected populations differ from uninfected populations in this immune trait suggests that it is because bonobos experience increased mortality or costs to their reproductive success because of their infection,” she said. “The differences between the bonobo populations provides the first evidence of any kind, albeit indirect, that a wild great ape suffers any sort of consequences from their infection.”

Pattern of protection

One of Wroblewski’s collaborators on the paper, Beatrice Hahn from the University of Pennsylvania, has documented the patterns of malarial infection in the great apes over recent decades. Her previous work helped establish that the most deadly human malarial parasite got its start with a jump from gorillas.

“Understanding the natural history and transmission patterns of malaria in our closest relatives is critical to gauge future transmissions,” Hahn said.

This research avoided any handling or other disturbance of wild bonobos because the DNA used for sequencing was extracted from feces that were collected after they were deposited.

The scientists were particularly intrigued to observe that the immunogenetic pattern observed in infected bonobos is very similar to what is observed among human populations experiencing malaria infection in Africa.

“This is notable because these immune genes evolve very rapidly while trying to keep up with rapidly evolving pathogens,” Wroblewski said. “Because of this, it is very unusual to observe a pattern that is shared between humans and their closest living relatives.”

She said that scientists should further investigate how this particular immune gene variant protects individuals — both bonobo and human — because understanding that mechanism might lead to an additional source of treatment or vaccination for humans.

It’s also important to understand how diseases are affecting the apes because they are endangered species. Disease is always a threat to their survival as they come under more and more pressure from human activity.

“With the numerous ways in which each host could adapt in response to their infection,” Wroblewski said, “I find it remarkable that both humans and bonobos respond to their infection in the same way.”



Journal

Nature Communications

DOI

10.1038/s41467-023-36623-9

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Malaria-driven adaptation of MHC class I in wild bonobo populations

Article Publication Date

23-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Kalle Tunström

Babies or beauty?

March 22, 2023
Integrated structural biology provides new clues for cystic fibrosis treatment

Integrated structural biology provides new clues for cystic fibrosis treatment

March 22, 2023

In the controversial field of sex selection during assisted reproduction, a new technique appears safe and around 80% effective in producing offspring of the desired sex, per a small clinical trial

March 22, 2023

How vision begins

March 22, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In