• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Malaria drug protects fetal mice from Zika virus, NIH-funded study finds

Bioengineer by Bioengineer
July 10, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hydroxychloroquine, a drug approved by the Food and Drug Administration to treat malaria and certain autoimmune diseases in pregnant women, appears to reduce transmission of Zika virus from pregnant mice to their fetuses, according to a study funded in part by the National Institutes of Health.

The drug works by inhibiting autophagy, a process by which cells remove toxins and recycle damaged components to generate energy. The researchers show that Zika virus may manipulate this process in the placenta to infect the developing fetus. Their study appears online in the Journal of Experimental Medicine.

"Zika virus infection during pregnancy can lead to a devastating array of birth defects, including microcephaly, abnormal reflexes, epilepsy, and problems with vision, hearing and digestion," said Catherine Y. Spong, M.D., deputy director of NIH's Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), which funded the work. "This study suggests that treating Zika-infected pregnancies with autophagy-inhibiting drugs may lower the risk of these abnormalities, but more research is needed to confirm these findings."

Previous research has established that autophagy plays an important role in the placenta's defense against bacteria and other disease-causing agents. In the current study, NICHD-funded researchers led by Indira U. Mysorekar, Ph.D., at the Washington University School of Medicine in St. Louis, demonstrate that Zika virus infection activates autophagy in lab cultures of human placental cells and in the placentas of mouse models of Zika virus transmission. They then show that, when infected with Zika, pregnant mice lacking an essential autophagy gene called Atg16l1 have significantly lower levels of detectable virus and less placental and fetal damage, compared to Zika-infected pregnant mice who have the gene.

"These results led us to reason that an existing drug that blocked autophagy and could be administered during pregnancy might reduce vertical transmission of Zika virus," said Dr. Mysorekar.

To test their hypothesis, the researchers administered hydroxychloroquine, an FDA-approved drug known to inhibit autophagy, to Zika-infected pregnant mice. Consistent with the results seen in mice who lacked the Atg16l1 gene, mice treated with hydroxychloroquine have lower levels of detectable virus in their placentas and less placental damage, compared to untreated mice. The treatment also restricts Zika infection in the fetal head and leads to a larger fetal body size, suggesting that the drug limits cross-placental transmission of the virus.

"Our findings indicate that pharmacological inhibition of autophagy warrants evaluation in preclinical studies and eventually in human trials to further define its effects on Zika congenital disease," added Dr. Mysorekar.

###

The study received additional funding from the Burroughs Wellcome Fund, the March of Dimes and NIH's National Institute of Allergy and Infectious Diseases.

Reference

Cao B, et al. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. Journal of Experimental Medicine. 2017.

About the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD): NICHD conducts and supports research in the United States and throughout the world on fetal, infant and child development; maternal, child and family health; reproductive biology and population issues; and medical rehabilitation. For more information, visit NICHD's website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov

Media Contact

Robert Bock or Meredith Daly
[email protected]
301-496-5133
@NICHDPress

http://www.nichd.nih.gov

http://dx.doi.org/10.1084/jem.20170957

Share12Tweet7Share2ShareShareShare1

Related Posts

Assessing Resilience and Care Skills in Oncology Nurses

October 19, 2025

Exploring Chronic Hepatitis B and Fatty Liver Proteomics

October 19, 2025

Pyrroloquinoline Quinone Alleviates Spinal Pain in Mice

October 19, 2025

Insights on Autistic Employees in Competitive Employment

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1262 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    291 shares
    Share 116 Tweet 73
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    125 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Resilience and Care Skills in Oncology Nurses

Exploring Chronic Hepatitis B and Fatty Liver Proteomics

New Distribution Record: Cymbalaria muralis in Kashmir Himalaya

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.