• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Making the DNA melt curve more accurate

Bioengineer by Bioengineer
August 19, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NIST researchers find a new (mathematical) twist to improve DNA origami

IMAGE

Credit: NIST

DNA is not only the blueprint of life, it has become the backbone for making tiny structures that can be inserted into the human body to diagnose and treat disease. In particular, researchers are setting their sights on a technique known as DNA origami, in which they meticulously assemble hundreds of strands of DNA to build a Lilliputian collection of structures that could include drug delivery containers, biosensors and other biocompatible devices.

In efforts that promise to dramatically improve this process, scientists at the National Institute of Standards and Technology (NIST) have now found a way to significantly enhance the accuracy of key information on how heat affects the stability of folded DNA structures.

To function reliably, these structures, only a few tens of nanometers (billionths of a meter) in length, must be carefully shaped in order, for example, to deliver drugs to specific targets. But the forces — hydrogen bonds — that bind pieces of DNA together to form the well-known double helix depend on both temperature and their local environment.

To determine how different strands of DNA react to changes in temperature, researchers rely on a series of measurements that form a graph known as the DNA melt curve. The curve reveals, for instance, the temperature at which half the strand has “melted,” or unraveled. It also shows the amount of heat the strands must absorb to raise their temperature by one degree C. By revealing these and other thermal properties of the strands, the curve provides scientists with the knowledge to design durable, more complex structures made from DNA.

As important as the DNA melt curve is, there remains a long-standing problem in accurately measuring it. Because of background effects and unknown sources of variability, dozens of identical DNA samples will have different melt curves, limiting scientists’ ability to extract meaningful information.

The NIST researchers have designed a novel mathematical algorithm that automatically accounts for these unknown effects, allowing scientists to reap the full benefits of the melt curve.

As scientists who have studied several ways to perfect DNA origami, NIST researchers Jacob Majikes and Alex Liddle were all too familiar with the inaccuracies plaguing the DNA melt curve. In principle, if they and other researchers could precisely reproduce all of the laboratory conditions under which they measured the curve, the uncertainties could be reduced.

But given the minute amounts of DNA in the experiments — no bigger than a water droplet — that was difficult to do in practice. So Majikes and Liddle reached out to a NIST mathematician, Anthony Kearsley, and his collaborator, NIST physicist Paul Patrone, in the hopes of finding a mathematical solution.

For Kearsley and Patrone, the challenge was irresistible: The true DNA melt curve was hidden in every set of measurements; the challenge was to find a way to reveal it. No known mathematical theory fully describes the melt curve, so the researchers had to figure out a way to remove the uncertainties in the melt curve using the experimental data alone. With so little information, it meant they had to be creative.

In searching for an algorithm that would solve this problem, the team recognized that the distortions to the true DNA melt curves were behaving in a straightforward manner. That is, the distortions were akin to a special kind of funhouse mirror — one that preserved the relative spacing between data points even as it contracted or expanded the curve, and that allowed parallel lines to remain parallel. To try and correct those effects, the scientists applied a mathematical tool known as an affine transformation.

Kearsley and Patrone were looking for a particular affine transformation — one that made each dataset conform to all the others, so that they would essentially look the same. But to find that transformation, using a technique known as constrained optimization, the scientists had to step away from the blackboard and immerse themselves in the mechanics of the DNA laboratory.

Neither Kearsley nor Patrone had even heard of DNA origami, let alone the measurements required to assemble the melt curve. They asked dozens of questions about each component of the nanoscale experiment, determining which parts were important to model and which were irrelevant. After weeks of theoretical calculations, Patrone got his first chance to view the actual experiment. He viewed in amazement the laboratory setup, with its 8×12 array of 96 tiny wells, each containing exactly the same sequence of DNA from which Majikes and Liddle had recorded 96 different DNA melt curves.

Armed with more than enough laboratory data, Kearsley and Patrone fleshed out the optimization problem they thought would work best to remove the errors. Then they applied the algorithm to each of the 96 curves and watched what happened.

On a computer screen, the multitude of curves, distorted in different ways, became indistinguishable, each tracing out the same shape, height and endpoints. The 96 curves had collapsed to become a single DNA melt curve.

“We were convinced we had solved the problem,” said Kearsley. The researchers report their findings in Volume 607 of Analytical Biochemistry.

Scientists have used DNA origami to fabricate nanorobots that perform computing operations and pre-programmed tasks inside living organisms. They have also relied on DNA origami to create miniature drug delivery containers that open only when they identify and attach to infected cells.

The team is now spreading the word about the success of their solution, alerting researchers who perform DNA origami that it is possible to accurately measure the melt curve and guide the growth of DNA origami structures. Just as importantly, said Patrone, the same technique could be applied to other biophysical problems in which the true data is obscured by similar types of errors. The researchers are studying how to improve the accuracy of experiments in which human cells flow through tiny cancer-hunting detectors.

###

Media Contact
Ben P. Stein
[email protected]

Original Source

https://www.nist.gov/news-events/news/2020/08/making-dna-melt-curve-more-accurate

Related Journal Article

http://dx.doi.org/10.1016/j.ab.2020.113773

Tags: BiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyMicrobiologyMolecular BiologyNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Colorimetric Clues Reveal Hidden Catalysis Secrets

September 17, 2025
blank

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

September 16, 2025

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Fat Diet Hinders Memory Formation by Suppressing Autophagy

Keck Hospital of USC Recognized as Vizient Top Performer for Third Consecutive Year

Exploring Long COVID’s Impact on Menstruation Cycle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.