• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Making extreme precipitation projections more reliable using observational constraint

Bioengineer by Bioengineer
November 3, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Projections of future extreme precipitation change can be made more reliable by using a constraint from observed present-day precipitation variability, which reduces the uncertainties in projections by 20-40% over the mid-to-high latitudes, according to a joint study by the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS) and the Met Office, the UK’s national meteorological service.

Emergent constraint

Credit: Wenxia Zhang

Projections of future extreme precipitation change can be made more reliable by using a constraint from observed present-day precipitation variability, which reduces the uncertainties in projections by 20-40% over the mid-to-high latitudes, according to a joint study by the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS) and the Met Office, the UK’s national meteorological service.

 

This study was published in Nature Communications on 3rd November.

 

The world continues to be surprised by record-shattering precipitation extremes, including the Europe and China floods of 2021 and the more recent Pakistan flood of 2022, that have caused havoc on the society and economy. How much worse will it be in the future as global warming intensifies? Countries need reliable climate projections to prepare themselves. However, current state-of-the-art climate models, despite all agreeing on a future intensification, still show large uncertainties in the magnitude of changes in extreme precipitation – the so-called “projection uncertainty”. This poses a grand challenge for climate action and adaptation planning.

 

To tackle this issue, two major challenges remain to be solved, including identifying the sources of projection uncertainty, and finding effective methods to constrain such uncertainty.

 

Using multi-model ensemble simulations, this study finds that the disagreement between extreme precipitation projections from different models is significantly related to the models’ representations of present-day precipitation variability (i.e., the range that precipitation events vary in time). An emergent relationship can thus be established – specifically, climate models that simulate weaker present-day precipitation variability tend to project larger increases in extreme precipitation occurrences under a given global warming increment. This emergent relationship holds significantly in many regions around the world particularly in the mid-to-high latitudes.

 

“We justified this emergent relationship statistically and theoretically using idealized distributions for precipitation. This statistical argument not only provides insights into understanding the projection uncertainty, but also enhances the credibility of the constraint,” said Wenxia Zhang, associate professor at IAP and lead author of the study.

 

“Using this emergent constraint, combined with observed precipitation variability, we can provide an effective way of constraining extreme precipitation projections,” said Kalli Furtado, Expert Scientist at the Met Office and second author of the study. “It not only reduces the projection uncertainty by 20-40% regionally, but also corrects the best estimate of future changes. For example, the constraint suggests that future increases in extreme precipitation may be greater than previously projected in Northern Asia, but may be less than previously projected in Europe.”

 

“Previous investigations have developed methods to constrain projections in the context of global or tropical average extreme precipitation. However, climate adaptation activities need reliable regional information of projection. An important merit of this emergent constraint is that it holds at regional scales, and thus can be applied to different regions to make regional extreme precipitation projections more reliable,” said Tianjun Zhou, corresponding author of the study, a senior scientist at IAP and professor at the University of Chinese Academy of Sciences. “This is expected to provide actionable climate science to greatly benefit regional adaptation planning, ranging from agriculture planning and food security to flood-control systems and public safety, among many other sectors.”

 

The study is jointly supported by the National Key Research and Development Program of China, the National Natural Science Foundation of China, the International Partnership Program of Chinese Academy of Sciences, and the UK–China Research Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund.



Journal

Nature Communications

DOI

10.1038/s41467-022-34006-0

Article Title

Constraining extreme precipitation projections using past precipitation variability

Article Publication Date

3-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
AC hum noise-based detection using HumTouch.

Tech that turns household surfaces into touch sensors is a touch closer to application

February 4, 2023

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In