• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Making a fast ion transporter

Bioengineer by Bioengineer
April 17, 2019
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: NINS/IMS

Na+/H+ antiporters exchange sodium ions and protons across cellular membrane to control pH, ion concentrations and cell volume, which is linked to a wide spectrum of diseases from heart failure to autism. Researchers now design a faster Na+/H+ antiporter based on the simulations.

An international team of researchers, research associate professor Kei-ichi Okazaki at Institute for Molecular Science and groups of professors Gerhard Hummer and Werner Kühlbrandt at Max Planck Institute of Biophysics, revealed an ion transport mechanism of the archaeal Na+/H+ antiporter PaNhaP in atomic detail by molecular dynamics simulations. Based on the simulations, they discovered a pair of residues that serves as a gate to the ion-binding site. Furthermore, they found that a mutation weakening the gate makes the transporter twice as fast as the wild type. The work was published in Nature Communications on April 15, 2019.

“It was surprising that the mutation makes the transporter faster,” Okazaki says, “the speed-up suggests that the gate balances competing demands of fidelity and efficiency.” The gate was discovered through simulations where they applied a method called transition path sampling to overcome the enormous time-scale gap between seconds-scale ion exchange and microseconds simulations. The simulations captured the ion transporting events, which is not possible with conventional simulations.

“We would like to understand design principles of transporters, how they recognize their substrates and how they control transport speeds,” Okazaki says, “these mechanistic understandings can help develop drugs to cure transporter-related diseases in future.”

###

Media Contact
Kei-ichi Okazaki
[email protected]

Original Source

https://www.ims.ac.jp/en/news/2019/04/17_4308.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-09739-0

Tags: BiochemistryBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.