• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Major step forward in the production of ‘green’ hydrogen

Bioengineer by Bioengineer
May 27, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The first thermodynamically-reversible chemical reactor capable of producing hydrogen as a pure product stream represents a “transformational” step forward in the chemical industry, the authors of a new study claim.

The novel reactor, described today in the prestigious academic journal Nature Chemistry, avoids mixing reactant gases by transferring oxygen between reactant streams via a solid state oxygen reservoir.

This reservoir is designed to remain close to equilibrium with the reacting gas streams as they follow their reaction trajectory and thus retains a ‘chemical memory’ of the conditions to which it has been exposed.

The result is that hydrogen is produced as a pure product stream, removing the need for costly separation of the final products.

Led by Newcastle University, UK, the research involved experts from the universities of Durham and Edinburgh and the European Synchrotron Radiation Facility in France, and was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Professor Ian Metcalfe, lead author and Professor of Chemical Engineering at Newcastle University said:

“Chemical changes are usually performed via mixed reactions whereby multiple reactants are mixed together and heated. But this leads to losses, incomplete conversion of reactants and a final mixture of products that need to be separated.

“With our Hydrogen Memory Reactor we can produce pure, separated products. You could call it the perfect reactor.”

Most abundant element in the universe

Hydrogen is the most abundant element in the universe. Produced through the splitting of water molecules, the shift towards renewable energy has led to a rise in so-called ‘green hydrogen’.

Hydrogen is a clean and useful energy store and can be used as a fuel, to generate electricity and can be stored and transported via the gas networks.

All processes – be they chemical, mechanical or electrical – are thermodynamically irreversible, and are less efficient that they otherwise could be.

This means that in traditional chemical reactors when hydrogen is produced it needs to be separated from other products, a process which is both costly and often energy intensive.

Describing their new system, the team demonstrate a chemical reactor capable for the first time of approaching thermodynamically-reversible operation.

Reacting water and carbon monoxide to generate hydrogen and carbon dioxide, the system also prevents carbon being carried into the hydrogen produce stream as carbon monoxide or carbon dioxide, thus avoiding contamination of the product.

‘Flipping’ the reservoir a bit like a switch, the team showed it is possible to reach high conversion in the system so that carbon dioxide and hydrogen are produced at either end of the reactor as pure products.

“Whereas conventional hydrogen production requires two reactors and a separation, our reactor accomplishes all the steps in one unit,” adds Professor Metcalfe.

“And while we demonstrate the concept with hydrogen, the memory reactor concept may also be applied to other processes.”

###

Media Contact
Ian Metcalfe
[email protected]

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/Chemistry
Share12Tweet7Share2ShareShareShare1

Related Posts

Resilient Order Emerges from Chasing and Splashing

Resilient Order Emerges from Chasing and Splashing

November 5, 2025
blank

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pediatric Spinal Cord Injury: Trends & 2045 Forecast

Resilient Order Emerges from Chasing and Splashing

Structural Snapshots Reveal ÎĽ-Opioid Nucleotide Release

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.