• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Major breakthrough in developing new cancer drugs

Bioengineer by Bioengineer
March 19, 2014
in Cancer, Immunology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal (UdeM), in collaboration with the Maisonneuve-Rosemont Hospital’s Quebec Leukemia Cell Bank, recently achieved a significant breakthrough thanks to the laboratory growth of leukemic stem cells, which will speed up the development of new cancer drugs.

Major breakthrough in developing new cancer drugs

Top: Acute myeloid leukemia cells presenting anomalies in standard growth conditions. Below: Acute myeloid leukemia cells preserving their leukemic cell features following in vitro culture with the two chemical molecules referred to in the study cited.

In a recent study published in Nature Methods, the scientists involved describe how they succeeded in identifying two new chemical compounds that allow to maintain leukemic stem cells in culture when these are grown outside the body.

This important advance opens the way to the identification of new cancer drugs to fight acute myeloid leukemia, one of the most aggressive forms of blood cancer.

The ability to grow leukemic stem cells in culture is a major breakthrough. The next step is to study the molecular mechanisms that regulate the survival and proliferation of leukemic cells as well as the resistance to cancer drugs.

This study is the work of the “Leucégène” research group. This group is co-directed by Dr. Guy Sauvageau, chief executive officer and principal investigator at IRIC as well as professor in the Department of Medicine at the UdeM; by Dr. Josée Hébert, director of the Quebec Leukemia Cell Bank, hematologist at Maisonneuve-Rosemont Hospital and professor in the Department of Medicine at the UdeM; and by Sébastien Lemieux, principal investigator at IRIC. The first author of the study is Caroline Pabst, a postdoctoral fellow at IRIC and associate of the “Leucégène” research group.

“This research breakthrough demonstrates the advantage of working in a multidisciplinary team like the ‘Leucégène’ research group,” stated Drs. Sauvageau and Hébert. “Access to cells of leukemia patients and to IRIC’s state-of-the-art facilities are also key factors in pursuing ground-breaking research.”

Background to the study

Stem cells located in the bone marrow are responsible for the production of blood cells. Unfortunately, deregulation of those cells often produces disastrous consequences when one of them develops mutations that transform it into a malignant cell called “leukemic”. The result is an abnormal proliferation of blood cells and the development of leukemia. Leukemic stem cells are also one of the likely causes of patient relapse because they are especially resistant to cancer treatments.

The major obstacle before this discovery was growing stem cells and keeping them intact in vitro, because they quickly lost their cancer stem cell character. As a result, it was very difficult to effectively study the multiplication of cells that cause leukemia.

To get around that difficulty, the team of researchers studied leukemic stem cells from patients with acute myeloid leukemia, obtained from the Quebec Leukemia Cell Bank. After thousands of tests using various chemicals, they identified two new chemical compounds that, when added to the culture medium, can keep functional human leukemic stem cells alive for at least seven days in vitro.

Story Source:

The above story is based on materials provided by Institute for Research in Immunology and Cancer│IRIC, Benjamin AUGEREAU.

Share12Tweet8Share2ShareShareShare2

Related Posts

Loneliness Fuels Depression in Cancer Survivors

Loneliness Fuels Depression in Cancer Survivors

August 16, 2025
Nab-Paclitaxel Combo Outperforms Gemcitabine in Biliary Cancer

Nab-Paclitaxel Combo Outperforms Gemcitabine in Biliary Cancer

August 16, 2025

Comparing Treatments for Advanced Esophageal Cancer

August 16, 2025

Immune Checkpoint Inhibitors Show Promise in Unknown Cancers

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.