• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Magnetic nature of complex vortex-like structures in a Kagome crystal Fe3Sn2

Bioengineer by Bioengineer
October 28, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Recently, observation of new topological magnetic structures represented by skyrmions is expected to provide new paths in constructing spintronic devices. In magnetic bubbles, although these are “ancient” cylinder domains, the type-I bubbles (renamed as skyrmion bubbles with the same topology as skyrmions) have remotivated general scientific interests. On using Lorentz transmission electron microscopy (Lorentz-TEM) to recognize magnetic bubbles in magnetic nanostructures, scientists observed some complex vortex-like magnetic structures beyond the traditional magnetic bubbles (Figure 1a), which could be used as information carriers in emerging spintronic devices. Physical understanding of them, however, remains unclear. Recently, Tang et al. from High Magnetic Field Laboratory of Chinese Academy of Sciences clarified these complex vortex-like structures as depth-modulated three-dimensional (3D) magnetic bubbles in a Kagome crystal Fe3Sn2.

As retrieved from the traditional TIE analysis technique, the magnetic configurations may deviate significantly from real magnetic structures. Because of the direct detection of the local magnetic field of the differential phase contrast (DPC) technique, DPC makes it a more advanced technique in determining real magnetic configurations accurately. Using the DPC technique, first, authors obtained the real features of these complex magnetic configurations (Figure 1b). Then, by combining with 3D numerical simulated types-I and II magnetic bubbles, authors further demonstrated that the integral in-plane magnetization mappings of two types of magnetic bubbles are in high consistency with the experiments (Figure 2) and are responsible for the complex vortex-like magnetic structures.

As obtained from the TEM technique, the magnetic configurations are more readily considered as two-dimensional magnetic domains. This study suggests that 3D magnetic structures play an important role in understanding complex magnetic configurations. Recently, 3D magnetic structures have attracted much attention; however, direct observation of 3D magnetic structures remains a challenging task. This study provides an important experimental proof of the existence of 3D magnetic structures.

###

See the article:

Jin Tang, Yaodong Wu, Lingyao Kong, Weiwei Wang, Yutao Chen, Yihao Wang, Y Soh, Yimin Xiong, Mingliang Tian, and Haifeng Du

Two-dimensional characterization of three-dimensional nanostructures of magnetic bubbles in Fe3Sn2

Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa200

https://doi.org/10.1093/nsr/nwaa200

Media Contact
Haifeng Du
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa200

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

October 6, 2025
blank

Transforming Biogas Waste into an Effective Solution for Ammonium Pollution Cleanup

October 6, 2025

Scientists Incorporate Waveguide Physics into Metasurfaces to Unlock Advanced Light Manipulation

October 6, 2025

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Insights into Endothelial Cell Death in Sepsis

LVSG Effects on LES and GERD: Meta-Analysis

PRDM6: A Key Protector Against PCOS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.