• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, September 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Machine learning enables optimal design of anti-biofouling polymer brush films

Bioengineer by Bioengineer
August 3, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Polymer brush films consists of monomer chains grown in close proximity on a substrate. The monomers, which look like “bristles” at the nanoscale, form a highly functional and versatile coating such that it can selectively adsorb or repel a variety of chemicals or biological molecules. For instance, polymer brush films have been used as a scaffold to grow biological cells and as protective anti-biofouling coatings that repel unwanted biological organisms.

Designing Better Anti-biofouling Polymer Brush Films with Machine Learning

Credit: Tokyo Tech

Polymer brush films consists of monomer chains grown in close proximity on a substrate. The monomers, which look like “bristles” at the nanoscale, form a highly functional and versatile coating such that it can selectively adsorb or repel a variety of chemicals or biological molecules. For instance, polymer brush films have been used as a scaffold to grow biological cells and as protective anti-biofouling coatings that repel unwanted biological organisms.

As anti-biofouling coatings, polymer brushes have been designed based primarily on the interaction between monomers and water molecules. While this makes for simple design, quantitative prediction of the adsorption of biomolecules, such as proteins, onto monomers have proved challenging owing to the complex interactions involved.

Now, in a recent study published in ACS Biomaterials Science & Engineering, a research group led by Associate Professor Tomohiro Hayashi from Tokyo Institute of Technology (Tokyo Tech), Japan, has used machine learning to predict these interactions and identify the film characteristics that have a significant impact on protein adsorption.

In their study, the team fabricated 51 different polymer brush films of different thicknesses and densities with five different monomers to train the machine learning algorithm. They then tested several of these algorithms to see how well their predictions matched up against the measured protein adsorption. “We tested several supervised regression algorithms, namely gradient boosting regression, support vector regression, linear regression, and random forest regression, to select the most reliable and suitable model in terms of the prediction accuracy,” says Dr. Hayashi.

Out of these models, the random forest (RF) regression model showed the best agreement with the measured protein adsorption values. Accordingly, the researchers used the RF model to correlate the physical and chemical properties of the polymer brush with its ability to adsorb serum protein and allow for cell adhesion.

“Our analyses showed that the hydrophobicity index, or the relative hydrophobicity, was the most critical parameter. Next in line were thickness and density of polymer brush films, the number of C-H bonds, the net charge on monomer, and the density of the films. Monomer molecular weight and the number of O-H bonds, on the other hand, were ranked low in importance,” highlights Dr. Hayashi.

Given the highly varied nature of polymer brush films and the multiple factors that affect the monomer-protein interactions, adoption of machine learning as a way to optimize polymer brush film properties can provide a good starting point for the efficient design of anti-biofouling materials and functional biomaterials.



Journal

ACS Biomaterials Science & Engineering

DOI

10.1021/acsbiomaterials.2c00441

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Prediction of Serum Adsorption onto Polymer Brush Films by Machine Learning

Article Publication Date

29-Jul-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Airborne microplastics (AMPs) influence cloud formation

Plastic cloud: New study analyzes airborne microplastics in clouds

September 27, 2023
Microresonator

Researchers fabricate chip-based optical resonators with record low UV losses

September 26, 2023

SRI spins off AI-powered drug discovery platform Synfini, Inc.

September 26, 2023

Genetically engineering associations between plants and nitrogen-fixing microbes could lessen dependence on synthetic fertilizer

September 26, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tiny CRISPR tool could help shred viruses

Plastic cloud: New study analyzes airborne microplastics in clouds

Golden Goose Award announces 2023 awardees for discoveries in DNA sequencing technique, a bacteria-inspired method that saves crops and chicken pedigree lines

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In