• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Low power metal detector senses magnetic fingerprints

Bioengineer by Bioengineer
January 21, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Device designed for security systems can be built smaller, without the need for an active, energy-extensive doorway

IMAGE

Credit: Huan Liu


WASHINGTON, January 21, 2020 — Most traditional electromagnetic methods for detecting hidden metal objects involve systems that are heavy, bulky and require lots of electricity.

Recent studies have shown metallic objects have their own magnetic fingerprints based on size, shape and physical composition. In AIP Advances, from AIP Publishing, scientists look to leverage these observations to potentially create a smaller and cheaper system that is just as effective as their larger counterparts.

Researchers demonstrated the use of a new type of magnetic-based metal detection security system using magnetic fingerprinting to identify hidden metal objects more efficiently. By using materials in an emerging field known as weak magnetic detection, the device identified a wide variety of metallic objects, ranging from cellphones to hammers.

The early results helped establish magnetic fingerprinting as a feasible path forward in security detection.

“The achievement of applying magnetic anomaly detection technology in magnetic sensor arrays promises smart public security sensing systems with low cost, small size and low power budgets,” said Huan Liu, an author on the paper. “Unlike other electromagnetic detection methods, it doesn’t require someone to walk through a door framework and can be built in a compact size.”

Most of today’s security metal detectors only function when the user is actively searching for a metallic object, often by using some form of radiation. Such active screening requires machines to be bulky and demand a lot of energy.

In contrast, the group’s device can operate in a passive mode, significantly reducing the energy required for operation. This also potentially allows the technology to be portable and not need to rely on the constrained, threshold type of metal detectors that the public are most familiar.

The approach integrates three arrays of anisotropic magnetoresistance sensors with a microcontroller, computer and battery. After 2D magnetic data is gleaned from the advice, the researchers developed a computer workflow that processes the data and its fingerprint, removing noise.

The approach was able to identify fingerprints for objects larger than 16 inches and identify multiple objects separated by less than 8 inches.

“The major challenge in designing a weak magnetic detection-based public security system may lie in the difficulty to distinguish the weak object signals, like scissors and hammers, from unknown interference, which would decrease the signal-to-noise ratio and the range of the detection zone,” Liu said.

The group next hopes to better optimize the device’s ability to accurately identify fingerprints from farther distances.

###

The article, “Magnetic gradient full-tensor fingerprints for metallic objects detection of a security system based on anisotropic magnetoresistance sensor arrays,” is authored by Huan Liu, Xiaobin Wang, Junchi Bin, Haobin Dong, Jian Ge, Zheng Liu, Zhiwen Yuan, Jun Zhu, and Xinqun Luan. The article will appear in the journal AIP Advances on Jan. 21, 2020 (DOI: 10.1063/1.5133857). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5133857.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5133857

Tags: Chemistry/Physics/Materials SciencesElectromagneticsLaw Enforcement/JurisprudenceTransportation/Travel
Share12Tweet8Share2ShareShareShare2

Related Posts

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

August 19, 2025
Serve with a Spectacular Swerve: The Science Behind Spin and Precision

Serve with a Spectacular Swerve: The Science Behind Spin and Precision

August 19, 2025

Enhanced Trap Visualization: Full-Dimensional Imaging Advances Solar Cell Efficiency

August 19, 2025

Chefs and Scientists Collaborate to Explore Microbiology Through Kombucha and Kimchi

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NLRP3 Inflammasome Roles in PANoptosis, Disease

SiO2 Nanoparticles Enhance Conductivity in Polymer Blends

Soybean Phytocytokine-Receptor Module Boosts Disease Resistance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.