• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Low-intensity ultrasound can change decision-making process in the brain, research shows

Bioengineer by Bioengineer
April 15, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The study shows how low-intensity ultrasonic waves can be used to generate or suppress electrical signals in the brain, modulating normal brain function

Imagine working in your office while the sun is shining outside. Thinking about what you could be doing instead of working is an example of “counterfactual thinking”.

New research in primates has shown for the first time that counterfactual thinking is causally related to a frontal part of the brain, called the anterior cingulate cortex. And scientists have proven that the process can be changed by targeting neurons (nerve cells) in this region using low-intensity ultrasound.

The study was led by Dr Elsa Fouragnan at the University of Plymouth and published Monday 15 April in Nature Neuroscience.

Counterfactual thinking is an important cognitive process by which humans and animals make decisions – not only based on what they are currently experiencing, but by comparing their present experience with potential alternatives. In typical circumstances, should these alternatives become available in the near future, one would adaptively switch to them. For example, if the sun was shining while working, one would go out and enjoy the sun as soon as work is done.

If neurons in the anterior cingulate cortex are not working properly, then it would not be possible to switch to alternative options, even when these alternatives are the best available. Scientists believe that this is what happens in some psychiatric conditions where people are stuck in dysfunctional habits.

The study showed for the first time how low-intensity ultrasonic waves can be used to non-invasively, and with pinpoint accuracy, modulate normal brain function – affecting counterfactual thinking and the ability to switch to better alternative.

The research, conducted in macaques monkeys, follows previous work highlighting the safeness of the non-invasive ultrasound technique and its effect on the brain.

In the study, the macaques were tasked with finding a treat from a variety of options. They quickly learned which one was best, but the ‘best’ option was not always available to choose. Thus, they had to keep it in mind for when it became available again.

After showing that the cingulate cortex was linked with remembering which option was best, researchers used low intensity ultrasound to modulate the activity in this brain region and see its effect on behaviours. When the neurons were stimulated, their counterfactual thinking was impaired.

Dr Fouragnan explained why the findings were so significant and what it could mean for future treatment: “This is a really exciting study for two main reasons – firstly because we discovered that the cingulate cortex is crucial to help switch to better alternatives, and secondly because low-intensity ultrasound can be used to reversibly change brain activity in very precise part of the brain,” she said.

Ultrasound is well known as an imaging tool – in pregnancy, for example – but it can also be used as a therapeutic method, particularly for safely modulating brain activity. This is possible because the mechanical vibrations caused by ultrasonic waves can cause the generation or suppression of electrical signals in the brain, which in turn can be used to restore normal brain function.

Dr Fouragnan continued: “Ultrasound neurostimulation is an early-stage, non-invasive therapeutic technology that has the potential to improve the lives of millions of patients with mental health conditions by stimulating brain tissues with millimetre accuracy. Presently, neuromodulation techniques do exist for humans, to help people with conditions such as major depression or Parkinson’s. But there are no techniques that have this level of accuracy while remaining non-invasive.

“It’s still early stages and the next stage is for further trials to be conducted in humans, but the potential is very exciting.”

###

The full paper, published today in Nature Neuroscience and funded by The Wellcome Trust and Medical Research Council, is entitled The macaque anterior cingulate cortex translates counterfactual choice value into actual behavioural change (doi: 10.1038/s41593-019-0375-6). The study was co-authored by the University of Oxford, The Hong Kong Polytechnic University, Massachusetts Institute of Technology, and the laboratory Physics for Medicine, Paris.

Media Contact
Amy King
[email protected]
http://dx.doi.org/10.1038/s41593-019-0375-6

Tags: BehaviorDecision-making/Problem SolvingMemory/Cognitive ProcessesMental HealthneurobiologyPersonality/AttitudePhysiologySocial/Behavioral Science
Share13Tweet7Share2ShareShareShare1

Related Posts

Dihydromyricetin Shields Against Spinal Cord Injury Damage

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025
Key Genes Identified in Nutrient Stress During Virus Infection

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stress Hyperglycemic Ratio Links to Mortality in Diabetic Heart Failure

DOD Awards Research Grant to MMRI Scientist Developing Advanced Monitoring Techniques for Transplant Health in Wounded Veterans

Dihydromyricetin Shields Against Spinal Cord Injury Damage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.