• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Loss of ARID1A protein drives onset and progress of colon cancer

Bioengineer by Bioengineer
December 12, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(MEMPHIS, Tenn. – December 12, 2016) A team of scientists has developed a model system in mice that allows them to look closely at how a protein often mutated in human cancer exerts its tumor-silencing effects. Not all cancers are caused by direct changes in the genetic code. Cancers also arise from epigenetic events that influence gene expression in other ways. The new findings, reported online in Nature Genetics, shed light on how epigenetic processes contribute to gene regulation and the onset of colon cancer.

"ARID1A mutations occur in a broad range of human cancers, and it is important to have experimental systems where we can look at how mutation of this gene contributes to disease," said Charles W. M. Roberts, M.D., Ph.D., corresponding author of the study and executive vice president and director of the Comprehensive Cancer Center at St. Jude Children's Research Hospital. "Our results represent an advance in modeling colon cancer and implicate enhancer-mediated gene regulation as a principal tumor suppressor function of ARID1A."

ARID1A is a component of the SWI/SNF chromatin remodeling complex. Chromatin remodeling, which controls how much "read access" the cellular transcription machinery has to DNA sequences, can have profound consequences on gene expression. Genes encoding chromatin remodeling proteins are some of the most frequently mutated genes in human cancer.

The researchers showed that ARID1A functions as a tumor suppressor in the colon of mice but not in the small intestine. They discovered that enhancers, short regions of DNA that specify which genes are turned on in each cell type, were an important part of the interaction of ARID1A with the SWI/SNF chromatin remodeling complex.

Peter J. Park of Harvard Medical School and one of the authors of the study remarked: "Our work showed that when ARID1A is absent, the SWI/SNF chromatin remodeling complex is lost from thousands of enhancers, resulting in reduced expression of nearby genes."

The scientists revealed a broad role for ARID1A in regulating active enhancers whereby loss of ARID1A impairs control of cell identity in the colon and promotes cancer formation.

The new system will be useful in future work. "The system we have developed will be extremely useful to understand why chromatin remodelers are so frequently mutated in cancer, to reveal mechanisms that cause colon cancer growth, and to study potential therapeutic interventions," said Roberts.

###

The other authors are Radhika Mathur, Burak Han Alver and Agoston Agoston of Harvard Medical School; Adrianna San Roman and Ramesh A. Shivdasani of Harvard Medical School and Dana-Farber Cancer Institute; and Boris Wilson, Xiaofeng Wang of Dana-Farber Cancer Institute.

The research was funded in part by the National Institutes of Health (grants R01CA172152 and R01DK081113), the National Cancer Institute (Cancer Center Support Grant P30CA06516), The Cure AT/RT Now Foundation, the Avalanna Fund, the Garrett B. Smith Foundation, Miles for Mary, the Lind Family, Claudia Adams Barr, Alex's Lemonade Stand and ALSAC.

St. Jude Media Relations contact


Jann Ingmire
Desk: (901) 595-6384
Cell: (901) 356-5716
[email protected]
[email protected]

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is leading the way the world understands, treats and cures childhood cancer and other life-threatening diseases. It is the only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. Treatments developed at St. Jude have helped push the overall childhood cancer survival rate from 20 percent to 80 percent since the hospital opened more than 50 years ago. St. Jude freely shares the breakthroughs it makes, and every child saved at St. Jude means doctors and scientists worldwide can use that knowledge to save thousands more children. Families never receive a bill from St. Jude for treatment, travel, housing and food–because all a family should worry about is helping their child live. To learn more, visit stjude.org or follow St. Jude at @stjuderesearch.

Media Contact

Barry Whyte
[email protected]
@StJudeResearch

http://www.stjude.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

High-performance transparent-flexible electronic devices based on copper-graphene nanowire

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

March 31, 2023
2023 DGIST Commencement

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

March 31, 2023

Do we understand the flickering flames?

March 31, 2023

Can we connect to a virtual world as in the movie “The Matrix”? Microrobot technology has been developed for externally connecting in vivo neural networks.

March 31, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Extinction of steam locomotives derails assumptions about biological evolution

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

Do we understand the flickering flames?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In