• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Looking for dark matter with the universe’s coldest material

Bioengineer by Bioengineer
May 1, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ICFO/ P. Gomez & M. Mitchell

Scientists have been able to observe the universe and determine that about 80% of the its mass appears to be “dark matter,” which exerts a gravitational pull but does not interact with light, and thus can’t be seen with telescopes. Our current understanding of cosmology and nuclear physics suggests that dark matter could be made of axions, hypothetical particles with unusual symmetry properties.

In a new article published in Physical Review Letters and highlighted as an Editor’s suggestion, ICFO researchers Pau Gomez, Ferran Martin, Chiara Mazzinghi, Daniel Benedicto Orenes, and Silvana Palacios, led by ICREA Prof. at ICFO Morgan W. Mitchell, report on how to search for axions using the unique properties of Bose-Einstein condensates (BECs).

The axion, if it exists, would imply “exotic spin-dependent forces.” Magnetism, the best-known spin-dependent force, causes electrons to point their spins along the magnetic field, like a compass needle that points north. Magnetism is carried by virtual photons, whereas “exotic” spin-dependent forces would be carried by virtual axions (or axion-like particles). These forces would act on both electrons and nuclei, and would be produced not just by magnets, but also by ordinary matter. To know if axions do exist, a good way is to look and see if nuclei prefer to point toward other matter.

Several experiments are already searching for these forces, using “comagnetometers”, which are paired magnetic sensors in the same place. By comparing the two sensors’ signals, the effect of the ordinary magnetic field can be cancelled out, leaving just the effect of the new force. So far, comagnetometers have only been able to look for spin-dependent forces that reach about a meter or more. To look for short-range spin-dependent forces, a smaller comagnetometer is needed.

Bose Einstein Condensates (BECs) are gases cooled nearly to absolute zero. Because BECs are superfluid, their constituent atoms are free to rotate for several seconds without any friction, making them exceptionally sensitive to both magnetic fields and new exotic forces. A BEC is also very small, about 10 micrometers in size. To make a BEC comagnetometer, however, requires solving a tricky problem: how to put two BEC magnetometers in the same small volume.

In their study, Gomez and his colleagues report that they were able to solve this problem by using two different internal states of the same 87Rb BEC, each one acting as a separate but co-located magnetometer. The results of the experiment confirm the predicted high immunity to noise from the ordinary magnetic field and the ability to look for exotic forces with much shorter ranges than in previous experiments. Besides looking for axions, the technique may also improve precision measurements of ultracold collision physics and studies of quantum correlations in BECs.

###

Links of Reference:

Link to the paper: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.170401

Link to the research group at ICFO
https://www.icfo.eu/lang/research/groups/groups-details?group_id=20

Media Contact
Alina Hirschmann
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular PhysicsNanotechnology/MicromachinesOpticsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025
Osimertinib Myotoxicity: FDA Data Reveals Risks

Osimertinib Myotoxicity: FDA Data Reveals Risks

August 22, 2025

Vibronic Coupling Fuels Symmetry Breaking in Quadrupolar Dyes

August 22, 2025

Cold-Stressed Liver Exosomes Boost Brown Fat Heat

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mechanisms of Amino Acid Transport in Plants Unveiled

Osimertinib Myotoxicity: FDA Data Reveals Risks

Vibronic Coupling Fuels Symmetry Breaking in Quadrupolar Dyes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.