• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Looking beyond cancer cells to understand what makes breast cancer spread

Bioengineer by Bioengineer
February 16, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michigan Medicine

ANN ARBOR, Michigan — To understand what makes breast cancer spread, researchers are looking at where it lives – not just its original home in the breast but its new home where it settles in other organs. What's happening in that metastatic niche where migrated cancer cells are growing?

A new study from researchers at the University of Michigan Comprehensive Cancer Center identifies a protein in that microenvironment that promotes the spread of breast cancer cells. It's part of a well-known family of receptors, tyrosine kinase receptors, which are implicated in many types of cancer and for which promising inhibitors are being developed.

"A role for the tumor microenvironment in metastasis is being unraveled," says Celina Kleer, M.D., Harold A. Oberman Collegiate Professor of Pathology at Michigan Medicine. "If we can understand these mechanisms, we can find ways to inhibit them and prevent metastasis."

Breast cancer spreads to distant sites in the body in about 20 percent of patients. Researchers hope that stopping this spread or neutralizing its impact once it does spread will improve survival.

In a study published in Cell Reports, Kleer and her colleagues took tissue samples from patients, directly from the metastatic breast cancer lesions, to study the cells surrounding the area where these migrated tumors had set up. There are a whole host of cells in the cancer microenvironment, including immune cells, vasculature and mesenchymal stem cells.

The researchers found in particular that activity in the mesenchymal stem cells — progenitor cells shown to nurture tumor growth — influenced metastasis. The team found DDR2, a collagen receptor tyrosine kinase, is like the Pied Piper: it paves the road, coaxing breast cancer cells to spread, and stimulates signaling to increase cancer cell growth.

When DDR2 was present in cells, the researchers could see an orderly and efficient migration in which cancer cells, mesenchymal stem cells and collagen neatly align to form a metastasis. When DDR2 was deleted from cells, the cancer cells and collagen were in disarray, which led to less migration and fewer metastases.

They then studied mice in which DDR2 was deficient. Those mice formed fewer metastases and showed no signs of the orderly alignment of cells.

"We discovered that DDR2 mediates the communication between mesenchymal stem cells and cancer cells," says Kleer, who is director of the Breast Pathology Program at the University of Michigan Comprehensive Cancer Center. "When we inhibit this receptor in the mesenchymal stem cells, it tricks the cancer cells. The cells do not align, they do not migrate and they do not metastasize efficiently. This suggests a possible therapeutic target."

While an inhibitor of DDR2 is not available, inhibitors have been developed against other tyrosine kinases, such as HER2 and EGFR, suggesting that DDR2 is a well-suited target for drug development.

The researchers are continuing to study what happens when DDR2 is activated in breast cancer cells and how it promotes metastases.

"Our goal is to identify a way to interrupt breast cancer metastasis growth and invasiveness, either to prevent metastases from forming or to keep them at bay when they do develop. The microenvironment is a rich opportunity to better understand why cancer metastasizes and begin to attack that process," Kleer says.

###

Additional authors: Maria E. Gonzalez, Emily Martin, Talha Anwar, Caroline Arellano-Garcia, Natasha Medhora, Arjun Lama, Yu-Chih Chen, Kevin S. Tanager, Euisik Yoon, Kelley Kidwell, Chunxi Ge, Renny Franceschi

Funding: National Institutes of Health grants R01 CA125577, R01 CA107469, F30 CA19084, R25 GM086262, P30 CA046592

Disclosure: None

Reference: Cell Reports, Vol. 18, Issue 5, pages 1215-1228; doi: 10.1016/j.celrep.2016.12.079

Resources:University of Michigan Comprehensive Cancer Center, http://www.mcancer.org Michigan Medicine Cancer AnswerLine, 800-865-1125 Michigan Health Lab, http://www.MichiganHealthLab.org

Media Contact

Nicole Fawcett
[email protected]
734-764-2220
@umichmedicine

http://www.med.umich.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

High-Voltage Electrocution: SEM-EDS Reveals Wound Insights

October 10, 2025

Linking COPD, Cardiovascular Admissions to Referral Compliance

October 10, 2025

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

October 10, 2025

Bifidobacterium adolescentis SPM2022 Shows Anti-Obesity Effects

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1185 shares
    Share 473 Tweet 296
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Voltage Electrocution: SEM-EDS Reveals Wound Insights

Linking COPD, Cardiovascular Admissions to Referral Compliance

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.