• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Long-term memory setup requires a reliable delivery crew

Bioengineer by Bioengineer
July 13, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Synaptic plasticity depends on molecular hauler KIF5C, carrier of more than 650 RNAs, study finds

IMAGE

Credit: Scott Wiseman for Scripps Research

JUPITER, FL – The brain is wired for learning. With each experience, our neurons branch out to make new connections, laying down the circuitry of our long-term memories. Scientists call this trait plasticity, referring to an ability to adapt and change with experience.

For plasticity to happen, our neurons’ synapses, or connection points, must constantly remodel and adapt, too. The mechanics underlying neurons’ synaptic plasticity have become clearer, thanks to new research from the lab of Scripps Research neuroscientist Sathya Puthanveettil, PhD.

Scientists have learned that synaptic plasticity requires a complex relay from the neuron’s cell body to its dendrite arms and its synapse junctions. Like a 24-hour port and highway network, an internal transportation system of microtubule roads and robot-like couriers shuttle the cell’s vital cargo to its farthest reaches. The transported cargo allows ribosome organelles to assemble, read various RNA instructions, and build new proteins as needed in the dendrites.

In a study published July 13 in Cell Reports, Puthanveettil’s team reports that among the transport network’s courier molecules are two members of the Kinesin family, KIF5C and KIF3A. If KIF5C is knocked out, the team found, the neurons’ ability to branch out dendrites and form input-receiving spines suffers. A gain of function to Kif5C improves these traits.

The study’s first author, Supriya Swarnkar, PhD, a research associate in the Puthanveettil lab, says discerning the details of these processes points to possible causes of neurological disorders, and offers new directions for treatment. Kifs play an important role, she says.

“The ability to form memories depends on the proper functioning of the neuron’s long-distance transport system from cell body to synapse,” Swarnkar says. “And many studies have reported links between mutations in Kifs and neurological disorders, including intellectual disability, autism and ALS.”

Structurally, many of the Kinesin family proteins resemble a walking robot, something from science fiction. They have a platform for carrying cargo, and two leg-like appendages that move back and forth, in a forward walking motion, along microtubules. In fact, they are referred to as molecular machines. These remarkable walking robots move along with their cargo on their back, until they reach their synapse destination and deposit their packages.

There are 46 different kinds of these molecular machines, specialized to carry different types of cargo, Puthanveettil says. Scientists are beginning to learn which Kifs carry which cargo.

Puthanveettil’s team anticipated that KIF5C’s cargo might include various RNAs. Cousin of DNA, which encode genes and reside in the nucleus, RNAs are transcribed from DNA, take its genetic instructions out to the cell’s cytoplasm, build proteins encoded by the genes, and help regulate cell activities. Each different RNA has a different job.

By isolating complexes of KIF5C and their cargo, and then sequencing the RNA, they documented around 650 different RNAs that rely upon the KIF5C courier.

Significantly, this included an RNA that provides the code to initiate protein building, called EIF3G. If it doesn’t show up when and where needed, compounds required for synapse plasticity aren’t made. The ability to remodel the synapse with experience and to learn is impaired, Puthanveettil says.

To better understand the role of the Kifs in long-term memory storage and recall, the team carried out both loss- and gain-of-function studies both in cells and in mice, focusing on the dorsal hippocampal CA1 neurons that are involved in multiple forms of learning.

The mouse studies showed that loss of KIF5C diminishes spatial and fear-associated memory. If KIF5C is boosted in the dorsal hippocampus, on the other hand, memory is enhanced and amplified. The cells showed enhancement of synaptic transmission, arborization of dendrite arms, the neurons’ arm-like extensions, and eruption of signal-receiving mushroom spines. Mushroom spine density is correlated with memory and synaptic plasticity.

Taken together, the research offers new ideas for addressing a wide variety of neuropsychiatric disorders. Intellectual disability, depression, epilepsy, Alzheimer’s disease – anything that could benefit from greater or lesser expression of key proteins in neurons’ dendrites might respond to a boosting or diminishing these molecular couriers, Puthanveettil says.

###

Media Contact
Stacey DeLoye
[email protected]

Original Source

https://www.scripps.edu/news-and-events/press-room/2021/20210731-puthanveettil-neurons-long-term-memory.html

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2021.109369

Tags: BiologyCell BiologyGenesGeneticsNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breath-by-Breath Lung Gas Detection in Neonatal Mannequin

China’s Multi-Center Study on Preterm Small-for-Gestational-Age Neonates

Compassion Fatigue in Nursing Interns: Stress and Solutions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.