• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Little skates could hold the key to cartilage therapy in humans

Bioengineer by Bioengineer
May 12, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Andrew Gillis

WOODS HOLE, Mass. — Nearly a quarter of Americans suffer from arthritis, most commonly due to the wear and tear of the cartilage that protects the joints. As we age, or get injured, we have no way to grow new cartilage. Unlike humans and other mammals, the skeletons of sharks, skates, and rays are made entirely of cartilage and they continue to grow that cartilage throughout adulthood.

And new research published this week in eLife finds that adult skates go one step further than cartilage growth: They can also spontaneously repair injured cartilage. This is the first known example of adult cartilage repair in a research organism. The team also found that newly healed skate cartilage did not form scar tissue.

“Skates and humans use a lot of the same genes to make cartilage. Conceivably, if skates are able to make cartilage as adults, we should be able to also,” says Andrew Gillis, senior author on the study and a Marine Biological Laboratory Whitman Center Scientist from the University of Cambridge, U.K.

The researchers carried out a series of experiments on little skates (Leucoraja erinacea) and found that adult skates have a specialized type of progenitor cell to create new cartilage. They were able to label these cells, trace their descendants, and show that they give rise to new cartilage in an adult skeleton.

Why is this important? There are few therapies for repairing cartilage in humans and those that exist have severe limitations. As humans develop, almost all of our cartilage eventually turns into bone. The stem cell therapies used in cartilage repair face the same issue–the cells often continue to differentiate until they become bone. They do not stop as cartilage. But in skates, the stem cells do not create cartilage as a steppingstone; it is the end result.

“We’re looking at the genetics of how they make cartilage, not as an intermediate point on the way to bone, but as a final product,” says Gillis.

The research is in its early stages, but Gillis and his team hope that by understanding what genes are active in adult skates during cartilage repair, they could better understand how to stop human stem-cell therapies from differentiating to bone.

Note: There is no scientific evidence that “shark cartilage tablets” currently marketed as supplements confer any health benefits, including relief of joint pain.

###

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery – exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact
Diana Kenney
[email protected]

Original Source

https://www.mbl.edu/blog/little-skates-could-hold-the-key-to-cartilage-therapy-in-humans/

Related Journal Article

http://dx.doi.org/10.7554/eLife.53414

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyEvolutionGeneticsMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

65LAB Grants $1.5 Million to Duke-NUS Platform to Propel Antifibrotic Drug Discovery

65LAB Grants $1.5 Million to Duke-NUS Platform to Propel Antifibrotic Drug Discovery

August 14, 2025
Single-Atom Fe Boosts Acidic Oxygen Reduction

Single-Atom Fe Boosts Acidic Oxygen Reduction

August 14, 2025

Doctors’ Adoption of AI Scribes Sparks Ethical Debate

August 14, 2025

Mount Sinai Study Adds Evidence Linking Prenatal Acetaminophen Exposure to Increased Autism and ADHD Risk

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quality of Canned Whelk Under Varying Sterilization

Harnessing Inner Potential: The Role of Lithium Battery Recycling in Sustainable Innovation

Breakthrough Therapy Eradicates Bladder Cancer in 82% of Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.