• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Liquid jets break up more readily on a substrate

Bioengineer by Bioengineer
April 4, 2019
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using computational models to investigate how liquid drops behave on surfaces

Whether we’re aware of it or not, in day-to-day life we often witness an intriguing phenomenon: the breakup of jets of liquid into chains of droplets. It happens when it rains, for example, and it is important for inkjet printers. However, little is known about what happens when a liquid jet, also known as a liquid filament, breaks up on top of a substrate. According to a new study, the presence of a nearby surface changes the way the filament breaks up into smaller droplets. In a new paper published by Andrew Dziedzic at the New Jersey Institute of Technology in Newark, New Jersey, USA, and colleagues in EPJ E, computer simulations are used to show that a filament is more likely to break up near a surface.

The authors examined how different values of surface tension, the viscosity of the liquid and the dimensions of the liquid filament affect the way droplets are formed. This has important implications for a range of areas – from technology that uses tiny amounts of fluids and requires precise dosing, to the study of biological and geological systems.

When a filament is broken into multiple droplets, the structure is unstable because surface tension means liquids tend to shrink to have the smallest-possible surface area. Moreover, a single droplet has a smaller surface area than multiple droplets. The researchers found there were three possible scenarios: the filament collapses into one droplet, breaks up into multiple droplets, or breaks up and then re-forms back into a single droplet.

Further, they found that the presence of a substrate makes the breaking up of the filament more likely. The team hopes their work will benefit a variety of applications, such as the production of DNA chips and in connection with lab-on-a-chip technology.

###

Reference

A. Dziedzic, M. Nakrani, B. Ezra, M. Syed, S. Popinet, and S. Afkhami (2019), Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects, Eur. Phys. J. E, 2018, 42:18. DOI 10.1140/epje/i2019-11785-y

Media Contact
Sabine Lehr
[email protected]
http://dx.doi.org/10.1140/epje/i2019-11785-y

Tags: Chemistry/Physics/Materials SciencesMolecular Physics
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Antibodies recognize and attack different SARS-CoV-2 spike shapes

February 25, 2021
IMAGE

Scientists reveal details of antibodies that work against Zika virus

February 25, 2021

Scientists uncover new details of SARS-CoV-2 interactions with human cells

February 25, 2021

Why some coronavirus strains are more infectious than others

February 25, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesClimate ChangeGeneticsMaterialsTechnology/Engineering/Computer ScienceCell BiologyBiologycancerEcology/EnvironmentMedicine/HealthPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Antibodies recognize and attack different SARS-CoV-2 spike shapes
  • Scientists reveal details of antibodies that work against Zika virus
  • Scientists uncover new details of SARS-CoV-2 interactions with human cells
  • Why some coronavirus strains are more infectious than others
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In