• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Liquid jets break up more readily on a substrate

Bioengineer by Bioengineer
April 4, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using computational models to investigate how liquid drops behave on surfaces

Whether we’re aware of it or not, in day-to-day life we often witness an intriguing phenomenon: the breakup of jets of liquid into chains of droplets. It happens when it rains, for example, and it is important for inkjet printers. However, little is known about what happens when a liquid jet, also known as a liquid filament, breaks up on top of a substrate. According to a new study, the presence of a nearby surface changes the way the filament breaks up into smaller droplets. In a new paper published by Andrew Dziedzic at the New Jersey Institute of Technology in Newark, New Jersey, USA, and colleagues in EPJ E, computer simulations are used to show that a filament is more likely to break up near a surface.

The authors examined how different values of surface tension, the viscosity of the liquid and the dimensions of the liquid filament affect the way droplets are formed. This has important implications for a range of areas – from technology that uses tiny amounts of fluids and requires precise dosing, to the study of biological and geological systems.

When a filament is broken into multiple droplets, the structure is unstable because surface tension means liquids tend to shrink to have the smallest-possible surface area. Moreover, a single droplet has a smaller surface area than multiple droplets. The researchers found there were three possible scenarios: the filament collapses into one droplet, breaks up into multiple droplets, or breaks up and then re-forms back into a single droplet.

Further, they found that the presence of a substrate makes the breaking up of the filament more likely. The team hopes their work will benefit a variety of applications, such as the production of DNA chips and in connection with lab-on-a-chip technology.

###

Reference

A. Dziedzic, M. Nakrani, B. Ezra, M. Syed, S. Popinet, and S. Afkhami (2019), Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects, Eur. Phys. J. E, 2018, 42:18. DOI 10.1140/epje/i2019-11785-y

Media Contact
Sabine Lehr
[email protected]
http://dx.doi.org/10.1140/epje/i2019-11785-y

Tags: Chemistry/Physics/Materials SciencesMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

September 10, 2025

Innovative Methods for Generating Methanol Using Electricity and Biomass

September 9, 2025

Isotope Tafel Analysis Reveals Proton Transfer Kinetics

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.