• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Linking genes and brain circuitry in anxiety disorders

Bioengineer by Bioengineer
December 19, 2023
in Health
Reading Time: 3 mins read
0
Anxiety disorder
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kyoto, Japan – December 2023

Anxiety disorder

Credit: credit: Kalyani B. Karunakaran/WPI-ASHBi

Kyoto, Japan – December 2023

 

Anxiety disorders (ADs) affect more than 280 million people worldwide, making them one of the most common mental health conditions. ADs have a genetic basis as seen from inheritance in families, and people with one subtype of AD tend to have another subtype, suggesting a shared genetic basis. Although the brain circuitry involved in ADs has been identified, its link with gene expression remains unclear. Two researchers at Kyoto University in Japan set out to uncover this link and found two gene clusters expressed in the brain.

 

In previous research, targeted gene sequencing and genome-wide association studies (GWAS) have revealed frequently occurring mutations in people with AD or anxiety-associated personality traits. These mutations have been mapped to specific genes in the human genome. Meanwhile, neuroimaging techniques such as functional MRI (fMRI) and PET scans have shown that activity in specific neural circuits can predict anxious temperament in rhesus macaques, and micro-stimulation techniques in these monkeys can demonstrate which neural circuits are involved in the AD symptoms.

 

The Kyoto University researchers, Ms. Karunakaran and Dr. Amemori, investigated whether AD-associated genes are expressed in the same neural circuits identified by the imaging and micro-stimulation techniques. Specifically, they examined whether the regions where AD-associated genes are expressed could reveal the neurocircuitry of AD by analyzing the spatiotemporal transcriptomic data of more than 200 genes linked to four AD subtypes, generalized anxiety disorder, social anxiety disorder, obsessive-compulsive disorder, and panic disorder, in over 200 brain regions of normal human brains available in the Allen Brain Atlas.

 

Using statistical tests, the researchers found that AD-associated genes are highly expressed in the cerebral nuclei, the midbrain, and the limbic system. Further analysis of these areas by hierarchical clustering showed two AD gene clusters with distinct spatial expression profiles—one highly expressed in the limbic system and a specific set of cerebral nuclei and the other in the midbrain and a different set of cerebral nuclei; previous physiological research had suggested that these brain structures are involved in regulating AD behaviors. Additional analyses revealed that the two clusters were indeed linked to different behaviors. The two clusters also showed distinct enrichment patterns for subtype-specific genes, establishing a clear link between each cluster and specific AD subtypes.

 

One cluster was involved in glutamatergic receptor signaling, while the other was associated with serotonergic and dopaminergic signaling, further supporting a dichotomy in the neurophysiology of ADs. Additionally, the two clusters were linked to distinct region-specific gene networks and cell types.

 

Finally, the researchers examined developmental transcriptome data to track the expression patterns of the AD genes during brain development and found that the two spatial clusters have distinct and negatively correlated identities at specific developmental stages. One cluster is highly expressed during late infancy and adulthood, while the other is expressed during the late prenatal stage and early childhood. Thus, mutations in AD-associated genes might disrupt the normal timing of their expression, potentially impacting the development of signaling pathways and neural circuits, thereby producing the symptoms associated with AD.

 

In this research, the scientists discovered two gene clusters associated with AD that have distinct spatial and temporal expression patterns and functional profiles within the human brain. Further investigation of these gene clusters might provide new insights into the underlying causes of AD.



Journal

Translational Psychiatry

DOI

10.1038/s41398-023-02693-y

Method of Research

Meta-analysis

Subject of Research

People

Article Title

Spatiotemporal expression patterns of anxiety disorder-associated genes

Article Publication Date

13-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Urgent Call for Focus on Bladder Cancer Awareness

November 16, 2025

Exploring Mitochondrial Protein Transport Mechanisms

November 16, 2025

Regulating Membrane Proteins via Lipid Solvation

November 16, 2025

EFD vs. EWT: Advancing Alzheimer’s Detection Through Signal Analysis

November 16, 2025

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Urgent Call for Focus on Bladder Cancer Awareness

Exploring Mitochondrial Protein Transport Mechanisms

Biopotential and Bio-impedance: Enhancing Human-Robot Interaction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.