• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Link identified between nerve cell proteins and middle-age onset Dementia

Bioengineer.org by Bioengineer.org
January 27, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Yusuke Fujioka, Shinsuke Ishigaki, and Gen Sobue

Nagoya, Japan – Frontotemporal lobar degeneration (FTLD) is a type of dementia characterized by personality changes, language dysfunction, and abnormal behavior. It has an earlier onset than Alzheimer's disease, and is associated with a buildup of the tau protein in affected nerve cells (neurons).

Nagoya University-led Japanese research has now revealed that loss of the interaction between two RNA binding proteins changes the expression ratio of different forms of tau protein, producing the FTLD phenotype in mice, and that this could be rescued by rebalancing the tau ratio. The study was reported in Cell Reports.

The RNA binding protein FUS is linked to both familial and sporadic FTLD/ALS. The researchers investigated other proteins that bind the FUS complex within the nucleus and found another RNA metabolism regulator, SFPQ, to be key to the complex formation.

Both FUS and SFPQ control the process known as alternative splicing by which exons of a gene are joined to other exons or skipped altogether to produce different messenger RNAs and, consequently, different versions (isoforms) of the same protein. FUS/SFPQ-regulated alternative splicing of the Mapt gene at exon 10 produces two different tau isoforms (4R-T and 3R-T) that are usually balanced. However, the team showed that FUS or SFPQ silencing resulted in an excess of 4R-T over 3R-T.

The researchers generated mice lacking expression of FUS or SFPQ in a region of their brain important for memory and spatial navigation; the hippocampus. These mice were observed to have abnormal behaviors that resembled those of FTLD.

"They also had a reduced hippocampal volume, loss of neuronal cells, and less nerve cell growth than control animals," study first author Shinsuke Ishigaki says. "Crucially, the mice showed increased levels of a modified form of tau that is a known hallmark of FTLD and other neurodegenerative diseases."

The team attempted to rescue this disease phenotype in mice by rebalancing the 4R-T/3R-T ratio. "We achieved this by introducing a short sequence of RNA to block 4R-T expression," corresponding author Gen Sobue explains. "This recovered most of the changes associated with FTLD that had been caused by FUS or SFPQ silencing."

The researchers confirmed that the link between FUS/SFPQ and tau isoform regulation also exists in humans using a model from human stem cell-derived neurons and a mini-gene, implying a role for tau isoform imbalance in FTLD development in humans.

###

The article, "Altered Tau Isoform Ratio Caused by Loss of FUS and SFPQ Function Leads to FTLD-like Phenotypes" was published in Cell Reports at DOI: 10.1016/j.celrep.2017.01.013

Media Contact

Koomi Sung
[email protected]

http://www.nagoya-u.ac.jp/en/

Share12Tweet7Share2ShareShareShare1

Related Posts

Mechanical Confinement Shapes Melanoma Plasticity

August 27, 2025

Impact of Low Blood Pressure Dipping on Pediatric CKD

August 27, 2025

Optimal Flow Rate for Thoracoabdominal Aortic Surgery

August 27, 2025

High SERPINE2 Levels Signal Kidney Issues in Diabetes

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mechanical Confinement Shapes Melanoma Plasticity

Impact of Low Blood Pressure Dipping on Pediatric CKD

Optimal Flow Rate for Thoracoabdominal Aortic Surgery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.