• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ling Li leads team to see through eyes made of stone

Bioengineer by Bioengineer
June 9, 2023
in Biology
Reading Time: 4 mins read
0
Ling Li leads team to see through eyes made of stone
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ling Li, associate professor in the Department of Mechanical Engineering, has been awarded $1.05 million over three years to lead a team studying the visual abilities of a unique underwater creature with thousands of eyes.

Ling Li leads team to see through eyes made of stone

Credit: Photo by Alex Parrish for Virginia Tech.

Ling Li, associate professor in the Department of Mechanical Engineering, has been awarded $1.05 million over three years to lead a team studying the visual abilities of a unique underwater creature with thousands of eyes.

The project reunites Li with a former collaborator, University of South Carolina Associate Professor Daniel Speiser. They also enlisted the expertise of an internationally recognized applied mathematician who specializes in image processing, Daniel Baum of the Zuse Institute in Berlin.

What stony eyes see and what it means

The team’s research will focus on the stony eyes of chitons. These marine creatures have pill-shaped, hard outer shells with overlapping plates and soft inner bodies. Their shells are made of a calcium carbonate material called aragonite, one of the primary ingredients from which pearls are formed. To see its surroundings, a chiton uses thousands of tiny, stony eyes embedded in its shell’s armored plates, all formed from the same rugged material.

Speiser made early discoveries of the makeup of a chiton’s optic system, formulating ideas about the creature’s ability to see images. During Li’s Ph.D. studies at the Massachusetts Institute of Technology and subsequent postdoctoral work at Harvard, Li joined Speiser and collaborators to build off Speiser’s initial work and explore how the eyes work. Together, they devised an experimental setup allowing them to look directly through the chiton’s aragonite lens, seeing blurred but recognizable shapes.

Aragonite eyes are rigid and therefore cannot adjust their focus or viewing directions in the way the soft eyes of many creatures can. While Speiser and Li’s early work demonstrated the working principles and corresponding structural basis for single stony eyes, the animal’s ability to process visual information goes beyond individual eyes. These rigid optical elements are interconnected through a complex microscopic channel network that houses photosensitive cells and neural tissues, forming an integrated neural network. The animal gets visual feedback, but each eye isn’t processing much data. Because a single eye is roughly the width of a human hair, single-eye chiton vision is far from high-definition.

Still, a chiton’s shell has hundreds to thousands of those eyes. Do all the tiny images come back together in the chiton’s nervous system? Is it able to take those fragments and form a full picture? Does the visual information acquired from individual eyes reconstitute as a more high-definition image?

Answering new questions with a new team

Li and Speiser sought out funding opportunities to explore these new questions through their research. They secured a grant from the Human Frontier Science program, a booster of frontier, basic research focused on living organisms. The program provides research funding to support innovative research into fundamental biological problems, particularly projects with novel and interdisciplinary approaches that create international partnerships.

Li and Speiser’s project to uncover the working principles of the unique distributed sensing system of chitons was certainly novel.

Li’s team at Virginia Tech has established a storied history in exploring unique material design strategies from nature, having studied sea urchin-inspired ceramics and starfish microlattices. Speiser built a robust portfolio of projects at South Carolina in animal biology and physiology. The additional years of experience built in their respective labs gave them a deeper well of knowledge from which to draw and revisit their chiton questions.

Li and Speiser met Baum through a colleague and found that the German researcher’s background in image analysis and visualization of biological structures was the critical final piece to the puzzle of interpreting and reporting neural network data.

With backing from the Human Frontier Science program, the team wants to know how a simple marine mollusk processes visual feedback from thousands of eyes and how it pieces together those thousands of points of connected data to make decisions about movement and perceiving danger. A few different species of chiton will be studied so that the researchers can compare results.

Li will use his expertise in biological materials and 3D material characterization to obtain high-resolution 3D data of the chitons’ sensory networks. Baum’s team in Germany will then analyze Li’s dataset to establish digital models and formulate hypotheses about network function. Speiser’s team will pick up from there, testing his colleagues’ theories through animal behavioral experiments. Li will weigh back into that process, providing insight on how the hard and soft materials work together. The team will also investigate how factors such as shell and eye regrowth after damage impact the resilience of this distributed sensing network.

Both Speiser and Baum are eager to begin the project because of its vast potential.

“Learning more about the neural processing underlying vision in chitons is very exciting, as are the opportunities to explore how chitons avoid compromising their armor system by incorporating eyes into it and how they mitigate the metabolic costs incurred by a highly distributed network of hundreds to thousands of sensors,” said Speiser.

“This a wonderful project with two experts in biological materials and visual biological systems,” said Baum. “I’m very much looking forward to starting it, adding my own expertise in image analysis and visualization to help shed light on the fascinating visual system of chitons.”



Share13Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.