• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 20, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lineshape-tailoring of coupled plasmonic systems based on first principle

Bioengineer by Bioengineer
September 8, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Jing Lin, Meng Qiu, Xiyue Zhang, Huijie Guo, Qingnan Cai, Shiyi Xiao, Qiong He, Lei Zhou

Photonic systems consisting of multiple plasmonic/dielectric resonators coupled in different ways attracted immense research interests. Compared to simple photonic systems containing only one resonator, Such coupled systems exhibit more fascinating near-field (NF) properties (e.g., local field enhancement) and far-field (FF) responses manifested by unusual line-shapes dictated ultimately by how the involved resonators are coupled together, making them particularly useful in real applications.

Despite of great advances on experimental side, theoretical understandings on such systems are far from satisfactory. Available theoretical tools either cannot reveal the underlying physics (say, brute-force computations) or are empirical in nature (say, the coupled-mode-theory (CMT)) involving parameters retrieved from simulations, , which also hinders the fast designs of appropriate systems with desired NF and FF properties.

In a newly published paper in Light: Science & Application, Prof. Lei Zhou’s group from Physics Department of Fudan University in China, derived a formal theoretical framework from first principles (i.e., Maxwell’s equations), with all involved parameters directly computable via wave-function integrations without fitting procedures, to predict the fascinating properties of coupled photonic systems before having numerically simulated them (as always needed in previous parametrized models). To illustrate the powerfullness of their theory, they illustrate how to employ it to freely “design” the line-shape of a coupled system through modulating the couplings between resonators. In particular, they successfully construct a completely “dark” mode with vanishing radiative loss (i.e. a bound state in continuum), which have many applications in photonics. All theoretical predictions are verified by our experiments at near-infrared frequencies with excellent accuracies.

The established theoretical framework opens an alternative avenue to design the couplings, which have offered such complex photonic systems more opportunities to control NF and FF light environments as desired, making them particularly useful in applications such as nano-lasers, fluorescence enhancements and information transport. These scientists summarize their theory derived from first principles:

“…resemble the two equations in coupled mode theory, but our theory is different and processes the following merits. In the empirical CMT, the key parameters defined are usually obtained by fitting with numerical simulations, while the remaining ones can be derived by energy-conservation and time-reversal arguments. In contrast, here in our theory all parameters can be unambiguously evaluated, and therefore one can use it to predict the line-shapes of coupled systems before performing numerical simulations on them. Moreover, the empirical CMT cannot explicitly consider the NF couplings between resonators, while in our approach NF couplings can be unambiguously determined and explicitly included in determining the line-shape.”

“Once the leaky eigen modes of every single scatter are obtained, we can predict the line-shapes of the coupled systems without necessarily performing simulations on them.” They added.

“The significances of our work are clear: 1) On practical side, researchers (especially experimentalists) now have a powerful tool to “design” the coupled systems meeting their desires before performing simulations on a series of “trial” systems to search the best one; 2) On theoretical side, our theory provides a solid mathematics/physics basis for the empirical CMT widely used in the community, and more importantly, uncovers the clear physical meanings of those empirical parameters defined in the CMT; 3) The theory can be easily extended to study other wave systems (e.g., phononic systems). We believe that the general significance of this research and the new opportunities created by it should trigger intensive interests to a wide range of scientists.” the scientists forecast.

###

Media Contact
Lei Zhou
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00386-5

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    55 shares
    Share 22 Tweet 14

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Forecasts Dental Complications and Follow-Up Needs

Hidden Mpox Exposure Found in Healthy Nigerians

Genomic Approaches to Moso Bamboo Core Collections

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.