• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lighting the tunnel of plant evolution: Scientists explore importance of two-pore channels in plants

Bioengineer by Bioengineer
May 2, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two-pore channels (TPCs) are ancient ion channels present in the cells of both animals and plants. In animals, including humans, these ion channels play important roles in biological activities in various tissues, such as in the brain and nervous system. All land plant species contain TPC genes; in many higher vascular plants such as Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice), a single TPC gene is involved in the activity of slow vacuolar (SV) channels (voltage-dependent cation channels) along with long-distance signalling, defence, and responses to environmental stress. However, very little is known about the function of TPC proteins in non-flowering mosses and liverworts–some of the oldest organisms on Earth.

Lighting the Tunnel of Plant Evolution: Scientists Explore Importance of Two-Pore Channels in Plants

Credit: Tokyo University of Science (TUS)

Two-pore channels (TPCs) are ancient ion channels present in the cells of both animals and plants. In animals, including humans, these ion channels play important roles in biological activities in various tissues, such as in the brain and nervous system. All land plant species contain TPC genes; in many higher vascular plants such as Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice), a single TPC gene is involved in the activity of slow vacuolar (SV) channels (voltage-dependent cation channels) along with long-distance signalling, defence, and responses to environmental stress. However, very little is known about the function of TPC proteins in non-flowering mosses and liverworts–some of the oldest organisms on Earth.

In a recent study, a team of researchers led by Prof. Kazuyuki Kuchitsu from Tokyo University of Science, Japan, collaborated with researchers from Maria Curie-Sklodowska University, Poland, to explore the evolutionary and physiological significance of two-pore channels in the non-flowering bryophyte Marchantia polymorpha. Their widely recognized and appreciated article, which discusses this study in detail, was first published online in December 2021 and subsequently in print in the February issue in Plant and Cell Physiology. The article has also been chosen as an “Editor’s Choice” and “Research Highlight” article for the journal, which has published a commentary about the study here. The funding for this research was obtained through a grant from Japanese Society for the Promotion of Science and the National Science Centre, Poland.

M. polymorpha, or common liverwort, grows as thin, flat green sheets on moist soil or rock, and is an extant descended from one of the earliest plants to colonize land. M. polymorpha is a simple model organism that has been used to analyze the common characteristics of land plants. ‘’We realized that the genome of M. polymorpha has three TPC homologs: MpTPC1, 2, and 3, belonging to two distinctive groups, type 1 and type 2 TPC genes. We aimed to know what these two subgroups of TPC proteins do in M. polymorpha,’’ Prof. Kuchitsu explains.

To do so, the researchers first performed a phylogenetic analysis of the TPC genes in the green plant lineage. Then they characterized the three TPC proteins: MpTPC1 from the Type 1 TPC gene and MpTPC2 and MpTPC3 from the Type 2 TPC gene. Tagging these proteins with a fluorescent marker, they studied their localization in M. polymorpha cells. By CRISPR-Cas9 genome editing, the researchers developed mutant plants that didn’t contain functional TPC1, TPC2, or TPC3 genes and double mutant plants that lack functions of both TPC2 and TPC3 genes. Then, by patch-clamp electrophysiology analyses, they measured the ionic currents in isolated vacuoles from the living cells of M. polymorpha plants.

The results of the phylogenetic analyses provided some intriguing insights into the evolutionary history of M. polymorpha. “Unlike the type 1 TPC gene, which is well conserved in all land plants, type 2 TPCs were found in algal species.  This suggested that although the type 2 TPCs emerged before plants colonized the land, they failed to make their way into the genome of higher vascular plants and hornworts,” Prof. Kuchitsu tells us.

The researchers also found that the three TPC proteins were primarily localized at the vacuolar membrane of M. polymorpha. The mutant that lacked a functional TPC1 gene showed no SV channel activity. But mutants that lacked either functional TPC2, TPC3, or both, exhibited usual SV channel activity. Molecules such as phosphatidylinositol-3,5-bisphosphate and nicotinic acid adenine dinucleotide phosphate, that activate the TPCs of mammalian cells, failed to affect the ion channel activity in isolated vacuoles of the mutant plants. Prof. Kuchitsu surmises, “These observations, when tied down together, indicated that the type 1 TPCs–which are ubiquitous in all land plant species–are responsible for SV channels in their vacuolar membrane, but the type 2 TPCs likely encode ion channels that are different from the SV channel and animal TPCs.”

The team’s findings provide much-needed functional and evolutionary insights into the important-yet-elusive TPC family in plants, and on plant ion channels in general. With their eye on future research, they also aim to use insights from the evolutionary history of plants for improving plant growth and defence mechanisms against biotic and abiotic stresses. This could benefit industries like agriculture, among others.

 

***

 

Reference

DOI: https://doi.org/10.1093/pcp/pcab176

 

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society”, TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

 

About Professor Kazuyuki Kuchitsu from Tokyo University of Science

Professor Kazuyuki Kuchitsu is a renowned faculty of the Department of Applied Biological Science, Faculty of Science and Technology at Tokyo University of Science, Japan. He also serves as the founding Director of the Interdisciplinary Science & Technology Course in Tokyo University of Science. He received his PhD degree from the University of Tokyo Graduate School in 1990. His illustrious research career of four decades is marked by his interest in plant molecular biology/plant physiology, including signal transduction, plant immunity, environmental response, membrane, and programed cell death. He has received several prestigious awards and is a member of distinguished academic societies. He has published more than 100 papers in reputed journals in his field.  

 

Funding information

Bilateral Joint Research Projects (in part) No. 21036611-000141, Japanese Society for the Promotion of Science; DAINA 1 ‘Long-distance electrical signaling systems in plants – adaptation to the change from water to terrestrial environment,’ National Science Centre, Poland, No. 2017/27/L/NZ1/03164.



Journal

Plant and Cell Physiology

DOI

10.1093/pcp/pcab176

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Functional Analyses of the Two Distinctive Types of Two-Pore Channels and the Slow Vacuolar Channel in Marchantia polymorpha

Article Publication Date

22-Dec-2021

COI Statement

Authors declare no conflict of interest

Share12Tweet7Share2ShareShareShare1

Related Posts

Marie Helweg-Larsen, Ph.D.

New study finds worrying linked to more COVID-19 preventative behaviors

May 16, 2022
Artificial muscles help robot vacuum manipulators get a grip

Hannover Messe: Artificial muscles help robot vacuum manipulators get a grip

May 16, 2022

Eavesdroppers can hack 6G frequency with DIY metasurface

May 16, 2022

Comprehensive consideration for machine tools’ energy efficiency and machining accuracy: Exploring the coupling relationship between material removal and thermal control

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccinesWeaponryVirologyUrogenital SystemVirusVaccineZoology/Veterinary ScienceUrbanizationVehiclesUniversity of WashingtonWeather/Storms

Recent Posts

  • Exercise increases dopamine release in mice
  • IU study explored how people’s beliefs impact overdose education and naloxone distribution programs
  • Children in underserved communities are at increased risk of being admitted to the pediatric ICU and of dying there; black children at most risk
  • Precursor of spine and brain forms passively
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....