• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Light shed on the coordination of neural stem cell activation

Bioengineer by Bioengineer
April 8, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © Nicolas Dray, Laure Mancini and Laure Bally-Cuif, Institut Pasteur

In all adult vertebrates, neural stem cells can be recruited to produce new neurons in the brain. However, little is known about these so-called “activation” processes.

Scientists at the Institut Pasteur, CNRS, and Tel Aviv University working in collaboration with the École Polytechnique and INRAE have successfully performed 3D visualization and spatial and temporal distribution analysis of neural stem cell activation in the adult brain of a zebrafish vertebrate model.

Their findings demonstrate for the first time that activation events for these cells are coordinated in time and space. In particular, these results may help improve our understanding of regulation processes triggered during brain tumor formation. These findings are published in the April 5, 2021 issue of the journal Cell Stem Cell.

Stem cells, which are found in many adult organs in vertebrates including humans, are capable of proliferating and differentiating to generate new functional cells. For instance, stem cells in the brain (neural stem cells) produce new neurons in adulthood. Most of the time, neural stem cells are in a dormant state known as “quiescence”. In order to produce neurons, they must therefore first activate and then divide. This activation stage is crucial: it is a prerequisite for stem cell recruitment and is also critical to their survival (cells that activate excessively become exhausted quickly) and to the position and type of neurons formed.

Within their niche, neural stem cells activate and return to a dormant state in random order and asynchronously, suggesting that these events may be coordinated at cell population level. Scientists in the Zebrafish Neurogenetics Unit at the Institut Pasteur chose zebrafish to test this hypothesis, since zebrafish adult brains contain large quantities of neural stem cells, otherwise similar to mammalian stem cells. Through intravital (non-invasive) two-photon imaging of adult fish, they were able to film stem cells in their niche for several weeks and study the activation pattern of each cell in relation to neighboring cells in real time. Spatial statistical analysis and modeling performed both in real time and in long-term computational simulations demonstrated the existence of inhibitory interactions generated by activated cells, delaying the activation of other adjacent stem cells by several days. By administering a pharmacological molecule in vivo, the scientists also identified the molecular pathway involved, which is known as the Notch signaling pathway. Finally, they demonstrated that these interactions enabled steady neuronal production in time and space.

“This is the first real-time and long-term imaging of an entire neural stem cell population in the brain of an adult vertebrate. These findings demonstrate for the first time that neural stem cell activation events in the vertebrate brain are coordinated in time and space within the niche,” commented Laure Bally-Cuif, CNRS scientist, lead author of the study, and Head of the Zebrafish Neurogenetics Unit1 at the Institut Pasteur. Unexpectedly, this study has also demonstrated that the stem cells themselves are involved in this coordination. Therefore, this research has prompted the emergence of a new concept whereby stem cell populations self-organize as a dynamic system enabling spatiotemporal coordination of the behavior of each individual cell.

Such regulation may occur in tumor masses containing cancerous stem cells, in which stem cells in various states of quiescence or activation have been observed. It is also likely that such regulation takes place in the stem cell populations of other adult organs where stem cells are found in compact niches, such as epithelia.

Link a to a video showing stem cells covering one of the cerebral hemispheres of an adult fish. The stem cells were monitored for 23 days to analyze their positions, activation events, and differentiation. The fish were anesthetized and filmed using a two-photon microscope every 3 days. The dots show the center of each cell and the arrows show dividing stem cells : https://www.youtube.com/watch?v=bPZsMz5tsGM

###

Media Contact
Héloïse Rakovsky
[email protected]

Original Source

http://www.pasteur.fr/en/press-area/press-documents/light-shed-coordination-neural-stem-cell-activation

Related Journal Article

http://dx.doi.org/10.1016/j.stem.2021.03.014

Tags: BiologyCell BiologyMicrobiologyMolecular BiologyneurobiologyNeurochemistryPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Titanate Nanotubes Enhance Lithium-Ion Battery Anodes

Harnessing Mitochondrial Biogenesis to Fight Acute Kidney Injury

Groundbreaking Discoveries in Tumor Angiogenesis and the Origins of Endothelial Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.