• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Light pollution has complex effects on animal vision

Bioengineer by Bioengineer
July 6, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jolyon Troscianko

Changes in the colour and intensity of light pollution over the past few decades result in complex and unpredictable effects on animal vision, new research shows.

Insect attraction to light is a well-known phenomenon, but artificial lighting can also have more subtle consequences for species that rely on night-time vision for their behaviour.

To explore these effects, University of Exeter researchers examined the impact of more than 20 kinds of lighting on the vision of moths, and birds that eat them.

The study found that elephant hawkmoth vision was enhanced by some types of lighting and disrupted by others, while the vision of birds that hunt moths was improved by almost any lighting.

Night-time lighting is increasing rapidly worldwide, and has changed dramatically in the last 20 years, as amber (low-pressure sodium) streetlights are replaced with a diverse range of modern lights such as LEDs.

“Modern broad-spectrum lighting allows humans to see colour more easily at night,” said Dr Jolyon Troscianko, of the Centre for Ecology and Conservation on Exeter’s Penryn Campus in Cornwall.

“However, it is difficult to know how these modern light sources affect the vision of other animals.

“Hawkmoth eyes are sensitive to blue, green and ultraviolet, and they use this colour vision to help find flowers just like bees, but at incredibly low light levels – even under starlight.

“Moths are also vitally important pollinators – accounting for a similar proportion of pollination as bees – so we urgently need to investigate how lighting affects them.

“We used animal vision modelling to calculate the ability of moths to see flower colours, and of birds to see camouflaged moths under a wide range of natural and artificial lighting.

“Artificial lights designed for human vision lack the blue and ultraviolet ranges that are key to moth colour vision, and under many conditions will block the moth’s ability to see any colours at all.

“This could make it more difficult for them to find and pollinate wildflowers, and for them to find suitable spots to camouflage them from predators.

“Conversely, bird vision is much more robust, meaning artificial light will help them to find camouflaged moth prey, and will allow them to hunt later into the evening and earlier in the morning.”

The study finds that phosphor converted amber LED lighting – often suggested to be less harmful to nocturnal insects – has unpredictable consequences for insect vision depending on distance from the light source and the colour of the objects viewed.

White lights (with a greater blue component), allow for more natural colour vision in moths, but these light sources are known to be harmful for other species.

Moth numbers are declining across Europe, but this is particularly true of nocturnal species, with growing evidence for a link with light pollution.

The researchers call for a “nuanced approach” to lighting, beyond general efforts to limit the amount and intensity of light where possible.

###

The study was funded by the Natural Environment Research Council.

The paper, published in the journal Nature Communications, is entitled: “Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators.”

Media Contact
Alex Morrison
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-24394-0

Tags: BiodiversityBiologyEcology/EnvironmentEvolutionPlant SciencesPollution/RemediationPopulation BiologyZoology/Veterinary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Glycerol-3-Phosphate Drives Lipogenesis in Citrin Deficiency

November 14, 2025

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

November 14, 2025

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

November 14, 2025

Revolutionary Leap: AI Progresses at the Speed of Light

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glycerol-3-Phosphate Drives Lipogenesis in Citrin Deficiency

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.