• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Light has new capacity for electronics

Bioengineer by Bioengineer
April 27, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, D.C., April 27, 2017 — Characters in some of the more futuristic science fiction films, like "Minority Report" and "Iron Man," control computer displays with slick and deliberate hand motions. In "Minority Report," the protagonist, played by Tom Cruise, uses gloves that glow at the fingertips and give him the power of virtual manipulation. The light seems to allow him to control the screen as if it were a touchscreen, but he's touching nothing but air.

That technology is still science fiction, but a new study may bring it closer to reality. A team of researchers from Japan reports this week in Applied Physics Letters, from AIP Publishing, that they have discovered a phenomenon called the photodielectric effect, which could lead to laser-controlled touch displays.

A number of basic circuit components have been developed beyond their traditional electricity-based designs to instead be controlled with light, such as photo-resistors, photodiodes, and phototransistors. However, there isn't yet a photo-capacitor.

"A photo-capacitor provides a novel way for operating electronic devices with light," said Hiroki Taniguchi of the University of Nagoya in Japan. "It will push the evolution of electronics to next-generation photo-electronics."

Capacitors are basic components for all kinds of electronics, acting somewhat like buckets for electrons that can, for example, store energy or filter unwanted frequencies. Most simply, a capacitor consists of two parallel conducting plates separated by an electrically insulating material, called a dielectric, such as air or glass. Applying a voltage across the plates causes opposing (and equal) charges to build up on both plates.

The dielectric's properties play a determinate role in the electric field profile between the plates and, in turn, how much energy the capacitor can store. By using light to increase a property of the dielectric called permittivity, Taniguchi and his colleagues hope to create light-controlled capacitors.

Previous researchers have achieved a type of photo-dielectric effect using a variety of materials, but relied on photo-conductance, where light increased the materials electrical conductivity. The rise in conductance, it turns out, leads to greater dielectric permittivity.

But this type of extrinsic photodielectric effect isn't suitable for practical applications, Taniguchi said. A capacitor must be a good insulator, preventing electrical current from flowing. But under the extrinsic photodielectric effect, a capacitor's insulating properties deteriorate. In addition, such a capacitor would only work with low-frequency alternating current.

Now Taniguchi and his colleagues have found an intrinsic photodielectric effect in a ceramic with the composition LaAl9.9Zn0.01O3-δ. "We have demonstrated the existence of the photodielectric effect experimentally," he said.

In their experiments, they shined a light-emitting diode (LED) onto the ceramic and measured its dielectric permittivity, which increased even at high frequencies. But unlike prior experiments that used the extrinsic photodielectric effect, the material remained a good insulator.

The lack of a significant loss means the LED is directly altering the dielectric permittivity of the material, and, in particular, is not increasing conductance, as is the case with the extrinsic effect. It's still unclear how the intrinsic photodielectric effect works, Taniguchi said, but it may have to do with defects in the material.

Light excites electrons into higher (quantized) energy states, but the quantum states of defects are confined to smaller regions, which may be preventing these photo-excited electrons from traveling far enough to generate an electric current. The hypothesis being that the electrons remain trapped which leads to more electrical insulation of the dielectric material.

More research is needed before we'll see light-controlled screens, but the work is a significant step for the field. Further research will look to enhance the effect even more, minimize any energy dissipation due to a drop of dielectric properties, and optimize the material fabrication process, Taniguchi said. Further studies may also reveal new materials better suited for other electronics applications.

###

The article, "Optical control of dielectric permittivity in LaAl0.99Zn0.01O3-δ," is authored by Takayuki Nagai, Hidefumi Takahashi, Ryuji Okazaki, Kenji Tanabe, Ichiro Terasaki and Hiroki Taniguchi. The article appeared in Applied Physics Letters April 25, 2017 (DOI: 10.1063/1.4979644) and can be accessed at: http://aip.scitation.org/doi/full/10.1063/1.4979644.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

Media Contact

Julia Majors
[email protected]
301-209-3090
@jasonbardi

http://www.aip.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Choosing Wisely on Low-Value Care

October 17, 2025
blank

Linking Brain Waves, Balance, and Sensory Responses

October 17, 2025

Social Determinants Affect Pregnant Women’s Alcohol Use

October 17, 2025

Fano Interference Shapes Photon Pairs from Metasurface

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Choosing Wisely on Low-Value Care

Linking Brain Waves, Balance, and Sensory Responses

Social Determinants Affect Pregnant Women’s Alcohol Use

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.