• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Lifestyle trumps geography in determining makeup of gut microbiome

Bioengineer by Bioengineer
April 6, 2020
in Immunology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Captive apes’ microbiomes more similar to some humans’ than to wild apes’

IMAGE

Credit: GOUALOUGO TRIANGLE APE PROJECT

Apes in U.S. zoos host bacterial communities in their intestinal tracts that are more similar to those of people who eat a non-Western diet than to the gut makeup of their wild ape cousins, according to a new study from Washington University in St. Louis. Further, even wild apes that have never encountered antibiotics harbor microbes with antibiotic resistance genes.

The findings suggest that contact with people shapes the gut microbial communities, or microbiomes, of gorillas and chimpanzees, and that the gut microbiomes of wild apes provide clues to human-ape interactions that could inform efforts to protect the endangered species. The study also highlights a way to identify new antibiotic resistance genes before they become widely established in bacteria in people, giving researchers time to develop tools to counter such genes before they threaten human health.

The study is available online in The ISME Journal.

The gut microbiome supplies us with vitamins, helps digest food, regulates inflammation and keeps disease-causing microbes in check. Antibiotics can change the makeup of the gut microbiome in lasting ways.

“It’s difficult to figure out exactly how antibiotics affect the human gut microbiome when almost everyone is born with bugs that already have antibiotic resistance genes,” said senior author Gautam Dantas, PhD, a professor of pathology and immunology, of molecular microbiology, and of biomedical engineering at Washington University School of Medicine. “Wild apes are the closest thing we have to pre-antibiotics humans. Luckily, we got the opportunity to work with two highly respected primatologists.”

Co-authors Crickette Sanz, PhD, an associate professor of biological anthropology in Arts & Sciences at Washington University, and David Morgan, PhD, a research fellow at the Lester E. Fisher Center for the Study and Conservation of Apes at Lincoln Park Zoo in Chicago and an honorary research scientist at Washington University, study wild chimpanzees and gorillas in a remote area of NouabalĂ©-Ndoki National Park in the Republic of Congo. The park is managed by the Wildlife Conservation Society and the Congolese government. To learn about the apes’ gut microbiomes, Sanz, Morgan and their field teams followed apes in known groups and discreetly collected fecal samples from 18 wild chimpanzees and 28 wild gorillas. The noninvasive sampling method allowed the researchers to collect data on the apes without disturbing them.

The samples were stored in liquid nitrogen, carried to the park headquarters, and transported by dugout canoe down the Sangha River and then by truck to Brazzaville, the capital of the Republic of Congo, where they were held in a freezer until they could be shipped to Dantas’ lab. The researchers also collected and shipped fecal samples from 81 people who lived on the outskirts of the park.

Meanwhile, Dantas and first author Tayte Campbell, PhD – then a graduate student in Dantas’ lab – arranged to obtain fecal samples from 18 chimpanzees and 15 gorillas living at either the Saint Louis Zoo or the Lincoln Park Zoo. The researchers identified the kinds of bacteria and the antibiotic genes present in the gorilla, chimpanzee and human samples, and compared the results to publicly available data on people who live in the U.S., Peru, El Salvador, Malawi, Tanzania, or Venezuela and follow hunter-gatherer, rural agriculturalist, or urban lifestyles.

The gut microbiomes of people whose data was included in the study fell into two groups. In one were hunter-gatherers and rural agriculturalists who typically eat a diet heavy in vegetables and light in meat and fat; this group included the people from the outskirts of the national park in the Republic of Congo. In the second group were urban people who eat a meat-rich Western diet. Wild gorillas and chimpanzees formed a third group distinct from both human groups. But captive apes fell into the first group; they were most similar to people who ate non-Western diets.

“Chimpanzees are endangered, and Western lowland gorillas are critically endangered; their main threats are habitat destruction, poaching and disease,” Sanz said. “Measuring the gut microbiome could be a way to monitor apes’ exposure to anthropogenic threats so we can identify areas of concern and develop effective, evidence-based mitigation strategies.”

The researchers also identified several previously unknown antibiotic resistance genes in the wild apes and people from the Republic of Congo, including one that confers resistance to colistin, an antibiotic of last resort. For now, the genes reside in bacteria harmless to humans. But bacteria have the ability to share genes, so any antibiotic resistance gene could find its way into a more dangerous species of bacteria.

“Rare sampling opportunities of wild apes like in this study gives us a look into the future,” Campbell said. “When we find these novel antibiotic resistance genes in the environment, we can study them and possibly find ways to inhibit them before they show up in human pathogens and make infections very difficult to treat.”

“It would be very interesting to expand this research across a broader range of conservation contexts, such as commercial logging zones and tourist operations,” Morgan added. “With the arrival of human activities and associated anthropogenic disturbances, wild apes may be exposed to antibiotic resistance genes. We don’t know much about how antibiotic resistance spreads through natural environments, so that could have implications for human public health that we don’t yet understand. That’s something we’d like to investigate.”

###

Media Contact
Judy Martin Finch
[email protected]

Original Source

https://medicine.wustl.edu/news/lifestyle-trumps-geography-in-determining-makeup-of-gut-microbiome/

Related Journal Article

http://dx.doi.org/10.1038/s41396-020-0634-2

Tags: BiodiversityBiologyEcology/EnvironmentInfectious/Emerging DiseasesMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chasing the Cure: Advances in the Search for an HIV Vaccine

Rethinking Diabetes and Hypertension Treatment in Frail Older Adults: Prioritizing Do No Harm

Red Cell Indices Predict Cancer Risk: Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.