• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Life-like’ lasers can self-organise, adapt their structure, and cooperate

Bioengineer by Bioengineer
July 14, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By mimicking features of living systems, self-organising lasers could lead to new materials for sensing, computing, light sources and displays.

Lasing cluster

Credit: Imperial College London

By mimicking features of living systems, self-organising lasers could lead to new materials for sensing, computing, light sources and displays.

While many artificial materials have advanced properties, they have a long way to go to combine the versatility and functionality of living materials that can adapt to their situation. For example, in the human body bone and muscle continuously reorganise their structure and composition to better sustain changing weight and level of activity.

Now, researchers from Imperial College London and University College London have demonstrated the first spontaneously self-organising laser device, which can reconfigure when conditions change.

The innovation, reported in Nature Physics, will help enable the development of smart photonic materials capable of better mimicking properties of biological matter, such as responsiveness, adaptation, self-healing, and collective behaviour.

Co-lead author Professor Riccardo Sapienza, from the Department of Physics at Imperial, said: “Lasers, which power most of our technologies, are designed from crystalline materials to have precise and static properties. We asked ourselves if we could create a laser with the ability to blend structure and functionality, to reconfigure itself and cooperate like biological materials do.

“Our laser system can reconfigure and cooperate, thus enabling a first step towards emulating the ever-evolving relationship between structure and functionality typical of living materials.”

Lasers are devices that amplify light to produce a special form of light. The self-assembling lasers in the team’s experiment consisted of microparticles dispersed in a liquid with high ‘gain’ – the ability to amplify light. Once enough of these microparticles collect together, they can harness external energy to ‘lase’ – produce laser light.

An external laser was used to heat up a ‘Janus’ particle (a particle coated on one side with light-absorbing material), around which the microparticles gathered. The lasing created by these microparticle clusters could be turned on and off by changing the intensity of the external laser, which in turn controlled the size and density of the cluster.

The team also showed how the lasing cluster could be transferred in space by heating different Janus particles, demonstrating the adaptability of the system. Janus particles can also collaborate, creating clusters that have properties beyond the simple adding of two clusters, such as changing their shape and boosting their lasing power.

Co-lead author Dr Giorgio Volpe, from the Department of Chemistry at UCL, said: “Nowadays, lasers are used as a matter of course in medicine, telecommunications, and also in industrial production. Embodying lasers with life-like properties will enable the development of robust, autonomous, and durable next-generation materials and devices for sensing applications, non-conventional computing, novel light sources and displays.”

Next, the team will study how to improve the lasers’ autonomous behaviour to render them even more life-like. A first application of the technology could be for next-generation electronic inks for smart displays.



Journal

Nature Physics

DOI

10.1038/s41567-022-01656-2

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Self-organized Lasers of Reconfigurable Colloidal Assemblies

Article Publication Date

14-Jul-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Steps in a diagnostic test

A fast, accurate, equipment-free diagnostic test for SARS-CoV-2 and its variants

August 16, 2022
Still image of ring + background

The photon ring: A black hole ready for its close-up

August 16, 2022

Compound extreme events stress the oceans

August 16, 2022

Today’s heat waves feel a lot hotter than heat index implies

August 15, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesZoology/Veterinary ScienceVaccineUniversity of WashingtonVirusViolence/CriminalsWeather/StormsUrogenital SystemVehiclesWeaponryVirologyUrbanization

Recent Posts

  • A fast, accurate, equipment-free diagnostic test for SARS-CoV-2 and its variants
  • Gwangju Institute of Science and Technology scientists realize large-area organic solar cells that are low-cost, flexible, and efficient
  • Old drug, new trick: Researchers find combining antiviral drugs and antibody therapy could treat seasonal flu and help prevent next flu pandemic
  • How the brain gathers threat cues and turns them into fear
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In