• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Leaves are nature's most sophisticated environment sensors

Bioengineer by Bioengineer
February 5, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research confirms that leaves are nature’s most sophisticated environment sensors

New research confirms that leaves are nature’s most sophisticated environment sensors. We can therefore use leaves to tell us about the management of the land they are growing in.

Professor of Zoology, Yvonne Buckley at Trinity College Dublin is part of a global network of grassland ecologists who have found that critical plant nutrients such as nitrogen, phosphorus and potassium in leaves respond to fertilisation treatments as well as the climate and soils they are growing in. The discovery has just been published in Nature Ecology & Evolution.

While ecologists and agricultural scientists have known for some time that individual species at individual locations can vary in the amounts of these nutrients in their leaves in response to fertilisation, this is the first time that it has been confirmed across entire communities of plants in very different climates and soil conditions. The experiment was undertaken at 27 sites in four continents, from the semiarid grasslands and savannas of Australia to lush pastures in Europe and prairies in America.

When plants are fertilised they can use those extra nutrients to grow bigger and produce more flowers and seeds which can dilute the nutrients in their leaves, so a positive response of leaf nutrients to fertilisation is not guaranteed. A surprising result of this experiment was that Specific Leaf Area, a leaf trait that is commonly used to tell us about how plants defend themselves against herbivores and capture sunlight for growth, was unaffected by fertilisation. So this critical measure of leaf architecture is not changing in a consistent way in response to fertilisation. Leaf architecture is instead determined by climate and soil characteristics, so it may respond over a longer time frame than short-term fertilisation.

Commenting on the significance of the research, Professor Buckley said:

“As our environment changes more quickly due to climate change, intensification of agriculture and land use, it is becoming more important to understand how grasslands all over the world are likely to respond. Grasslands are one of the most extensive habitats in the world, they provide us with food, carbon storage and habitat for pollinators. Using plants as sensors of environmental change gives us another important tool for understanding the consequences of these changes for our life support systems.”

“There are two ways that leaf nutrients can change in grassland communities, either the existing species leaves change to store more nutrients or the kinds of species which can survive in these new conditions change to species that naturally have higher leaf nutrients. We found that for nitrogen and potassium both of these things were happening but for phosphorus the species change pathway was not important.”

###

The lead author of the paper is Professor Jennifer Firn from Queensland University of Technology with Professor Buckley as a co-author.

Media Contact
Caoimhe Ni Lochlainn
[email protected]
353-879-958-014
http://dx.doi.org/10.1038/s41559-018-0790-1

Tags: AgricultureAtmospheric ScienceBiologyCell BiologyClimate ChangeClimate ScienceEarth ScienceEcology/EnvironmentForestryPlant Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Quick Analysis of Indigestible Fiber Using NIR and ICP-OES

Quick Analysis of Indigestible Fiber Using NIR and ICP-OES

November 27, 2025
blank

C-Reactive Protein-Albumin-Lymphocyte Index: Sepsis Insights Unveiled

November 27, 2025

Mountain Frogs’ Dietary Adaptations to Climate Change

November 27, 2025

Transposable Elements Shape Immune Cell Regulatory Landscapes

November 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    103 shares
    Share 41 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    101 shares
    Share 40 Tweet 25
/div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Slipknot-Gauged Mechanical Transmission Powers Robotics

Mycobacterium Ku Oligomerises to Promote DNA Synapsis

Beta-Relay Signals Activate Prokaryotic SPARDA Defense

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.