• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Lazy, hazy days no more: A call-to-action to better understand air pollution mechanisms

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Advances in Atmospheric Sciences

Earth’s atmosphere has a budget, and when expenses outpace savings, secondary aerosols form in areas of excessive pollution. Greenhouse gases enter the atmosphere, and free radicals bond to the molecules, rendering them inert. But when there are more pollution molecules than free radicals, they are left to recombine and form ozone and visible particulate matter — smog and haze.

The precise mechanisms underlying this atmospheric oxidation capacity are not well understood, leaving the process inadequately described or completely missed in research, according to Yuesi Wang, professor with the State Key Laboratory of Atmospheric Boundary Layer Physics and Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). To address this challenge, Wang and co-author Zirui Liu, also with LAPC, penned the preface to a special issue of Advances in Atmospheric Sciences, titled, “Atmospheric Oxidation Capacity, Ozone, and PM2.5 Pollution: Quantification Methods, Formation Mechanisms, Stimulation, and Control.”

“This special issue focuses on the quantification and simulation of atmospheric oxidation capacity processes to better probe the role of missing mechanisms participating in the formation of secondary aerosols,” Wang said.

The special issue contains 14 recently published scientific papers investigating atmospheric oxidation capacity processes through various approaches. The papers include field observations of key oxidizing species in different environments, laboratory dynamics studies on ozone formation and more.

Wang co-authored three of the featured papers, including one quantifying the free radical budget and ozone production with numerical modeling. In this study, Wang and his co-authors found that the aerosol uptake of hydrogen superoxide, which consists of a hydrogen and two oxygen atoms, can help break down certain pollutants, essentially expanding the free radical budget by 11% and reducing the daytime ozone production by 14%.

“This suggests the synergetic mechanism of complex air pollution formation and is useful for the development of environmental measures,” Wang said, noting the work has resulted in a deeper understanding of atmospheric oxidation capacity mechanisms.

He and his team have developed indexes, or indicators, to characterize the atmospheric oxidation capacity in Beijing. Next, they plan to evaluate how the indexes might be applied in other highly polluted regions of China as they further study the relationship between the indexes and air quality.

It is one example of the type of research the special issue highlights and demands more of, according to Wang.

“More in-depth analyses and attributions are still needed for atmospheric oxidation capacity quantification and simulations to further understand the secondary formation processes and improve the underlying mechanisms,” Wang said.

###

Media Contact
Zheng Lin
 @aasjournal

86-108-299-5053

Original Source

http://english.iap.cas.cn/home/News/202106/t20210611_271916.html

Related Journal Article

http://dx.doi.org/10.1007/s00376-021-1001-6

Tags: Atmospheric ScienceChemistry/Physics/Materials SciencesEarth SciencePolicy/EthicsPollution/RemediationScience/Health and the LawTransportation/Travel
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exciplex-Powered High-Efficiency Fully Stretchable OLEDs

Ultra-High-Throughput Genetic Design Mapping Uncovered

Histological Changes During Fish Sex Change Unveiled

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.