• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Latest research provides SwRI scientists close-up views of energetic particle jets ejected from the Sun

Bioengineer by Bioengineer
May 15, 2023
in Chemistry
Reading Time: 4 mins read
0
Solar Injection
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO — May 15, 2023 —Southwest Research Institute (SwRI) scientists observed the first close-ups of a source of energetic particles expelled from the Sun, viewing them from just half an astronomical unit (AU), or about 46.5 million miles. The high-resolution images of the solar event were provided by ESA’s Solar Orbiter, a Sun-observing satellite launched in 2020.

“In 2022, the Solar Orbiter detected six recurrent energetic ion injections. Particles emanated along the jets, a signature of magnetic reconnection involving field lines open to interplanetary space,” said SwRI’s Dr. Radoslav Bucik, the lead author of a new study published this month in Astronomy & Astrophysics Letters. “The Solar Orbiter frequently detects this type of activity, but this period showed very unusual elemental compositions.”

In one ion injection, the intensity of the rare isotope Helium-3 exceeded the amount of hydrogen, the most abundant element on the Sun, and the levels of iron were similar to the isotope Helium-4, the second most abundant element on the Sun. In another injection two days later, the amount of Helium-3 had significantly decreased to an almost negligible amount.

“Our analysis shows that the elemental and spectral variations in recurrent injections are associated with the shape of the jet, the size of the jet source and the distribution of the underlying photospheric field that evolved over time,” Bucik said. “We believe that understanding the variability in recurrent events from a single source sheds light on the acceleration mechanism in solar flares.”

The observations made by Solar Orbiter are unique as the propagation effects that can affect abundances could be minimal near the Sun. The distance of just 0.5 AU has given the scientific team a remarkably detailed view of solar events.

“When we are closer, we have a considerably better spatial resolution,” Bucik said. “We are able to gain more insight into the source of these energetic particles because we can see the internal structure associated with acceleration processes as the injection evolves. Observations from twice that distance, 1 AU, are not very clear in comparison.”

Bucik and his colleagues hope to learn even more from the Solar Orbiter’s closest approaches to the Sun at 0.3 AU.

“These observations could help predict future solar energetic particle events,” Bucik said. “These particles can damage satellites and equipment and potentially harm astronauts. We want to understand how they accelerate away from the Sun and what the conditions are for their acceleration.”

The paper “Recurrent 3He-rich solar energetic particle injections observed by Solar Orbiter at ~0.5 au,” appears in Astronomy & Astrophysics (Letters to the Editor): https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202345875

For more information, visit https://www.swri.org/heliophysics.

Solar Injection

Credit: Southwest Research Institute

SAN ANTONIO — May 15, 2023 —Southwest Research Institute (SwRI) scientists observed the first close-ups of a source of energetic particles expelled from the Sun, viewing them from just half an astronomical unit (AU), or about 46.5 million miles. The high-resolution images of the solar event were provided by ESA’s Solar Orbiter, a Sun-observing satellite launched in 2020.

“In 2022, the Solar Orbiter detected six recurrent energetic ion injections. Particles emanated along the jets, a signature of magnetic reconnection involving field lines open to interplanetary space,” said SwRI’s Dr. Radoslav Bucik, the lead author of a new study published this month in Astronomy & Astrophysics Letters. “The Solar Orbiter frequently detects this type of activity, but this period showed very unusual elemental compositions.”

In one ion injection, the intensity of the rare isotope Helium-3 exceeded the amount of hydrogen, the most abundant element on the Sun, and the levels of iron were similar to the isotope Helium-4, the second most abundant element on the Sun. In another injection two days later, the amount of Helium-3 had significantly decreased to an almost negligible amount.

“Our analysis shows that the elemental and spectral variations in recurrent injections are associated with the shape of the jet, the size of the jet source and the distribution of the underlying photospheric field that evolved over time,” Bucik said. “We believe that understanding the variability in recurrent events from a single source sheds light on the acceleration mechanism in solar flares.”

The observations made by Solar Orbiter are unique as the propagation effects that can affect abundances could be minimal near the Sun. The distance of just 0.5 AU has given the scientific team a remarkably detailed view of solar events.

“When we are closer, we have a considerably better spatial resolution,” Bucik said. “We are able to gain more insight into the source of these energetic particles because we can see the internal structure associated with acceleration processes as the injection evolves. Observations from twice that distance, 1 AU, are not very clear in comparison.”

Bucik and his colleagues hope to learn even more from the Solar Orbiter’s closest approaches to the Sun at 0.3 AU.

“These observations could help predict future solar energetic particle events,” Bucik said. “These particles can damage satellites and equipment and potentially harm astronauts. We want to understand how they accelerate away from the Sun and what the conditions are for their acceleration.”

The paper “Recurrent 3He-rich solar energetic particle injections observed by Solar Orbiter at ~0.5 au,” appears in Astronomy & Astrophysics (Letters to the Editor): https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202345875

For more information, visit https://www.swri.org/heliophysics.



DOI

10.1051/0004-6361/202345875

Method of Research

Observational study

Subject of Research

Not applicable

Share12Tweet8Share2ShareShareShare2

Related Posts

Two-Step Excitation Powers and Directs Exotic Nanolight

Two-Step Excitation Powers and Directs Exotic Nanolight

October 7, 2025
blank

Scientists Unveil Breakthrough Compound Poised to Revolutionize Traumatic Brain Injury Treatment

October 7, 2025

Transforming Gemstone Polishing Waste into Smart Cement: A Sustainable Innovation

October 7, 2025

Advanced Battery Technology Predicts If Your EV Will Make It Home

October 7, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    790 shares
    Share 316 Tweet 197
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s Generalization Tied to Memory, Age, Abstractness

Tracking Cancer Screening Adherence Across U.S. Populations

Optimizing Housing Designs to Cut Multi-Hazard Losses

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.