• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Laser-induced graphene gets tough, with help

Bioengineer by Bioengineer
February 12, 2019
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rice University lab combines conductive foam with other materials for capable new composites

IMAGE

Credit: Tour Group/Rice University


HOUSTON – (Feb. 12, 2019) – Laser-induced graphene (LIG), a flaky foam of the atom-thick carbon, has many interesting properties on its own but gains new powers as part of a composite.

The labs of Rice University chemist James Tour and Christopher Arnusch, a professor at Ben-Gurion University of the Negev in Israel, introduced a batch of LIG composites in the American Chemical Society journal ACS Nano that put the material’s capabilities into more robust packages.

By infusing LIG with plastic, rubber, cement, wax or other materials, the labs made composites with a wide range of possible applications. These new composites could be used in wearable electronics, in heat therapy, in water treatment, in anti-icing and deicing work, in creating antimicrobial surfaces and even in making resistive random-access memory devices.

The Tour lab first made LIG in 2014 when it used a commercial laser to burn the surface of a thin sheet of common plastic, polyimide. The laser’s heat turned a sliver of the material into flakes of interconnected graphene. The one-step process made much more of the material, and at far less expense, than through traditional chemical vapor deposition.

Since then, the Rice lab and others have expanded their investigation of LIG, even dropping the plastic to make it with wood and food. Last year, the Rice researchers created graphene foam for sculpting 3D objects.

“LIG is a great material, but it’s not mechanically robust,” said Tour, who co-authored an overview of laser-induced graphene developments in the Accounts of Chemical Research journal last year. “You can bend it and flex it, but you can’t rub your hand across it. It’ll shear off. If you do what’s called a Scotch tape test on it, lots of it gets removed. But when you put it into a composite structure, it really toughens up.”

To make the composites, the researchers poured or hot-pressed a thin layer of the second material over LIG attached to polyimide. When the liquid hardened, they pulled the polyimide away from the back for reuse, leaving the embedded, connected graphene flakes behind.

Soft composites can be used for active electronics in flexible clothing, Tour said, while harder composites make excellent superhydrophobic (water-avoiding) materials. When a voltage is applied, the 20-micron-thick layer of LIG kills bacteria on the surface, making toughened versions of the material suitable for antibacterial applications.

Composites made with liquid additives are best at preserving LIG flakes’ connectivity. In the lab, they heated quickly and reliably when voltage was applied. That should give the material potential use as a deicing or anti-icing coating, as a flexible heating pad for treating injuries or in garments that heat up on demand.

“You just pour it in, and now you transfer all the beautiful aspects of LIG into a material that’s highly robust,” Tour said.

###

Editor’s note: Links to video and high-resolution images for download appear at the end of this release.

Jeff Falk 713-348-6775 [email protected]

Mike Williams 713-348-6728 [email protected]

Rice graduate students Duy Xuan Luong and Kaichun Yang and former postdoctoral researcher Jongwon Yoon, now a senior researcher at the Korea Basic Science Institute, are co-lead authors of the paper. Co-authors are former Rice postdoctoral researcher Swatantra Singh, now at the Indian Institute of Technology Bombay, and Rice graduate student Tuo Wang. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Scientific Research and the United States-Israel Binational Science Foundation supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/acsnano.8b09626.

This news release can be found online at https://news.rice.edu/2019/02/12/laser-induced-graphene-gets-tough-with-help-2/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Laser-induced graphene: https://pubs.acs.org/doi/abs/10.1021/acs.accounts.8b00084

Tour Group: http://tournas.rice.edu/website/

Arnusch Laboratory: https://arnuschlab.weebly.com

Rice Department of Chemistry: https://chemistry.rice.edu

Wiess School of Natural Sciences: https://naturalsciences.rice.edu

Video:

https://youtu.be/WWUOoOqOOUc

Composites of laser-induced graphene with a variety of other materials are tested for their anti-icing capabilities. Electrifying the thin, hydrophobic material prevents ice from forming on the surface. (Credit: Tour Group/Rice University)

https://youtu.be/7feX94m4F3I

A hydrophilic composite of laser-induced graphene and other materials readily soaks up water. (Credit: Tour Group/Rice University)

Images for download:

https://news-network.rice.edu/news/files/2019/02/0218_LIG-1-web-1i3zsjd.jpeg

Rice University scientists have combined laser-induced graphene with a variety of materials to make robust composites for a variety of applications. (Credit: Tour Group/Rice University)

https://news-network.rice.edu/news/files/2019/02/0218_LIG-2-web-1o9op5i.jpg

Laser-induced graphene, produced via a method developed at Rice University, can be combined with other materials for composites. The resulting materials show promise for electronic, anti-icing and heating applications. (Credit: Tour Group/Rice University)

https://news-network.rice.edu/news/files/2019/02/0218_LIG-3-WEB-1gyfgjq.jpg

A scanning electron microscope image shows a composite of laser-induced graphene and polystyrene. (Credit: Tour Group/Rice University)

https://news-network.rice.edu/news/files/2019/02/0218_LIG-4-WEB-rbrhhb.jpg

A scanning electron microscope image shows a composite of laser-induced graphene and latex paint. (Credit: Tour Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview.

Media Contact
Jeff Falk
[email protected]
713-348-6775

Related Journal Article

http://dx.doi.org/10.1021/acsnano.8b09626

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer ChemistryPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

August 22, 2025
blank

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025

Unraveling Fat Maps: Microfluidics and Mass Spectrometry Illuminate Lipid Landscapes in Tiny Worms

August 22, 2025

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Birth Weight Linked to Maternal, Neonatal PFOS Levels

β-Elemene’s Therapeutic Promise for Glioma, CNS Diseases

Wireless Contact Lenses: Enabling Eye-Machine Interaction Through Blink-Based Encoding

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.