• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Larger streams are critical for wild brook trout conservation

Bioengineer by Bioengineer
June 3, 2020
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Shannon White, Penn State

The Latin name for brook trout — Salvelinus fontinalis — means “speckled fish of the fountains,” but a new study by Penn State researchers suggests, for the first time, that the larger streams and rivers those fountains, or headwaters, flow into may be just as important to the brook trout.

With few exceptions, brook trout are found now only in small mountain streams that stay cold enough year-round to meet their biological needs, below 68 degrees Fahrenheit. Because these trout in the United States are threatened by a warming climate, many have assumed those headwater habitats alone are critical for their survival.

But a genetic analysis of brook trout in streams across the 460-square-mile Loyalsock Creek drainage in north-central Pennsylvania shows that the fish are very similar genetically, suggesting close relatedness among populations. The only way that could have happened, according to researcher Shannon White, postdoctoral scholar in the College of Agricultural Sciences, is fish moving between tributaries in the 86-mile-long Loyalsock Creek.

Temperatures in Loyalsock Creek exceed brook trout thermal tolerance from approximately June through September, White pointed out, so fish are believed to inhabit only the bigger river system during the winter. Although the behavior and survival of brook trout in Loyalsock Creek are not well understood, researchers hypothesize that some brook trout move into the mainstem after spawning in a tributary in October or November and stay until late spring, when some swim up new tributaries.

“It’s pretty simple — if widespread populations are related genetically, it indicates that fish are moving around between those populations,” she said. “There’s a high degree of genetic connectivity between populations separated by the mainstem, and that indicates that brook trout are swimming into Loyalsock Creek and using it as a movement corridor to connect populations in other tributaries.”

Understanding patterns of population connectivity is critical for species conservation, White added, because populations that are more connected typically are able to survive and adapt to disturbance and stress.

To build what White called “a family tree” of brook trout in the Loyalsock drainage, researchers collected 1,627 adult brook trout from 33 sites, with an average of 49 individuals collected from each site. They clipped the caudal fins of those fish and conducted genetic analysis on those tissue samples.

To estimate statistically how unique habitat features, such as road culverts and waterfalls found in streams, influence the movement of wild brook trout, researchers developed what they call the “bidirectional geneflow in riverscapes” model as part of a practical framework that uses genetic data to understand patterns and drivers of fish movement.

The novel modeling approach is significant, explained researcher Tyler Wagner, adjunct professor of fisheries ecology, because it shows that brook trout — at least in the Loyalsock Creek watershed — are not confined just to the headwaters. They are using the mainstem as a seasonal, thermally suitable corridor for movement.

There is no reason to expect that the Loyalsock drainage is different from others in the East, Wagner contends, so these results likely have implications for the conservation and management of wild brook trout. Specifically, these results suggest that conservation of larger streams and rivers may be necessary to protect and conserve critical brook-trout movement corridors that keep brook trout populations healthy.

“Some of the most fundamental questions in ecology relate to how organisms move through their environment,” said Wagner, who is assistant leader of the U.S. Geological Survey’s Pennsylvania Cooperative Fish and Wildlife Research Unit at Penn State. “These questions historically have been hard to address in fishes because it can be difficult statistically to estimate how unique habitat features found in streams and rivers influence movement. To address this void, we developed the riverscapes geneflow model.”

The findings of the Penn State study, recently published in Ecological Applications, contrast with other research related to brook trout behavior, White conceded. The consensus has been that trout do not move very far, she said. “But Loyalsock Creek is a fairly big watershed, and we have found that fish are moving quite a bit, and populations on opposite ends of the watershed are connected to one another genetically.”

However, White, who conducted a wide range of research on the brook trout population in the Loyalsock drainage while pursuing her doctoral degree in ecology at Penn State, noted that only a small proportion of the fish travel — and it is not just the young males that branch out. This is different from most wildlife species.

“In a separate study we used telemetry to monitor the movement of 162 fish and found that there is a small proportion of the population that moves,” she said. “It’s only about 20% of fish that get into Loyalsock Creek. In terms of males, females, and the size of fish that are moving, it doesn’t really seem to make a difference. This would suggest that there may be a genetic component to movement, in the sense that some fish have genes that are programmed to make them travel.”

###

Also involved in the research was Ephraim Hanks, associate professor of statistics, Eberly College of Science, Penn State.

The R.K. Mellon Freshwater Research Initiative at Susquehanna University funded this research, which is based upon work supported by the National Science Foundation Graduate Research Fellowship Program.

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/eap.2147

Tags: BiologyFisheries/AquacultureMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.