• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Label-free imaging helps predict reproductive outcomes

Bioengineer by Bioengineer
July 20, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo courtesy the Beckman Institute for Advanced Science and Technology

Researchers at the Beckman Institute for Advanced Science and Technology and the Department of Animal Sciences have collaborated to develop a new technique that can be used to determine the fertility of sperm samples. They hope to further develop the technique for assisted reproductive technology in humans.

The study “Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure” was published in the Proceedings of the National Academy of Sciences.

“This work is a part of a five-year project to develop dairy cattle that are resistant to heat and diseases in tropical areas. We want to donate these cows to developing countries to increase their food production,” said Matthew B. Wheeler, a professor of animal sciences and of bioengineering at the University of Illinois at Urbana-Champaign.

In order to develop these traits in cattle, the researchers need to determine which sperm samples work best for in vitro fertilization.

“Although the males may have sperm that are seemingly perfect, there could be morphological or DNA issues. This collaboration allows us to evaluate the spermatozoa and select the best in terms of fertility,” said Marcello Rubessa, a research assistant professor in the Wheeler Group.

Traditional techniques for imaging sperm samples are slow and labor intensive, and involve toxic stains. To circumvent this issue, these two teams used the label-free imaging techniques developed in the Beckman Institute’s Quantitative Light Imaging Laboratory to determine what parameters of the sperm make them fertile.

“We knew from the fertilization experiments which sperm samples worked. We used our imaging technique to understand what parameters were important for success,” said Mikhail Kandel, a graduate student with the Beckman lab. “We saw that the relationship between the size of the head and the tail of the sperm is an important parameter for fertility.”

Additionally, the researchers also improved the speed of the technique. “We used artificial intelligence to automate the process of analyzing these sperm cells,” said Yuchen He, a graduate student with QLIL.

The researchers hope to improve the speed of the technique for future analysis. “The motility of the sperm is sometimes fast. Therefore, we need to do the measurements quickly,” said Gabriel Popescu, a professor of electrical and computer engineering, and of bioengineering, and the director of the Quantitative Light Imaging Laboratory.

“For many years, we have developed various techniques for label-free imaging knowing that we had to give away molecular specificity,” Popescu said. “However, our newly developed phase imaging with computational specificity brings back the molecular specificity via AI, which is harmless and works on live cells. The applications are limitless, but one that truly benefits from absence of chemical stains is the assisted reproduction, as described in this collaborative study.”

###

The study was supported by grants from the Ross Foundation, the United States Department of Agriculture, the National Institutes of Health, and the Integrated Grants Management System.

Editor’s Note: The study “Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure” can be found at https://www.pnas.org/cgi/doi/10.1073/pnas.2001754117.

Media Contact
Doris Dahl
[email protected]

Original Source

https://beckman.illinois.edu/about/news/article/2020/07/20/label-free-imaging-helps-predict-reproductive-outcomes?

Related Journal Article

http://dx.doi.org/10.1073/pnas.2001754117

Tags: FertilityGynecologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

USP25 Weakens Tumor Immunosuppression in Head, Neck Cancer

December 1, 2025

Machine Learning Model to Predict Sarcopenia in Seniors

December 1, 2025

Nanomaterials: Revolutionizing Neurological Disorder Treatments

December 1, 2025

Comparing 18F PET Radiopharmaceuticals in Alzheimer’s Mouse Model

December 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cholinium Eutectogel Enables 48-Hour Dynamic EEG/ECG

Ionic Liquids Boost Perovskite Solar Cell Stability

Shape-Morphing Origami Guides Electromagnetic Waves

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.