• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Kratom’s reputed pain-relief benefits could come from one of its metabolites

Bioengineer by Bioengineer
May 29, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kratom is a Southeast Asian tree with a long history of use in traditional medicine. In the region, the plant’s leaves are widely consumed for pain relief, treatment of opioid addiction and other uses. Though its efficacy and safety are unproven, kratom use has spread to the U.S. and Europe. Now, researchers report in ACS Central Science that a metabolite of a kratom alkaloid could be responsible for the treatment’s therapeutic effects.

Currently, kratom is legal and available in the U.S. as a gray-market product, but it has an uncertain regulatory future. In the meantime, scientists are investigating the substance’s physiological effects. Some prior research attributed these effects to mitragynine, the major active alkaloid in kratom, and its binding to an opioid receptor. However, 7-hydroxymitragynine (7-OH), another alkaloid present in the leaf at far lower concentrations, also interacts with that receptor. To clear up the matter, Jonathan A. Javitch, Susruta Majumdar, Dalibor Sames and colleagues set out to probe the pharmacological and metabolic mechanisms behind kratom’s analgesic effects.

Through studies in cells and mice, the researchers showed that most of the analgesic effect is from 7-OH rather than mitragynine. They also found that metabolism of mitragynine in mouse and human liver preparations actually produces much more 7-OH than is present naturally in kratom. The team says that the results shed light on some of the seemingly contradictory reports on kratom, but more studies are still needed to see whether their findings in mice extend to humans.

###

The authors acknowledge funding from the National Institute on Drug Abuse, the American Kratom Association, the Department of Defense and the Hope for Depression Research Foundation.

The study is freely available as an ACS AuthorChoice article here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: Alternative MedicineChemistry/Physics/Materials SciencesForestryPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Negative Emotional Eating Common in Middle-Aged Adults

Tracking Helminth Infections and Drug Compliance in Nigeria

Fewer Large Animals Jeopardize Perinatal Research Progress

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.