• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

KIST identified cause of external pressure-induced performance deterioration in solar cells

Bioengineer by Bioengineer
July 13, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Theoretical explanation provided for the behavior of Perovskite solar cells in response to external pressure. Potential for new, high-performance Perovskite solar cell materials to be able to withstand extreme environments

IMAGE

Credit: Korea Institue of Science and Technology(KIST)

A team, led by Dr. Jung-hoon Lee of the Computational Science Research Center of the Korea Institute of Science and Technology (KIST), recently collaborated with a team, led by Professor Jeffrey B. Neaton from the UC Berkeley Department of Physics, to develop a theoretical explanation for the structural changes and metallization that take place when hybrid (organic metal halide) Perovskite solar cells are exposed to external pressure. The explanation announced by the two teams is attracting much attention from related academic and industrial circles

Today, solar cells are not only used in our everyday lives, but are also used in extreme conditions such as atmospheric, space, desert, and maritime environments. Hybrid Perovskite solar cells (comprised of organic metals, halide (I) and lead (Pb): (CH3NH3)PbI3) are highly efficient and involve low production costs. These cells are promising, next-generation solar cells that can potentially be used to replace costly conventional silicon solar cells. Recognizing this potential, many researchers have been trying to engineer highly efficient hybrid Perovskite solar cell materials that are able to operate normally even in extreme conditions.

However, phase transition, from the *orthorhombic to **cubic structures, has been reported in hybrid Perovskite solar cells, when the cells are exposed to high external pressure. Metallization has also been reported, wherein electricity flows within the element and renders it unable to function properly. These changes under pressure have been major hurdles to the commercialization of the hybrid Perovskite solar cells. Hybrid Perovskite solar cells with modified structures and characteristics are unable to convert solar radiation into electric energy. This indicates that external pressure substantially deteriorates the performance of the solar cells. However, prior to this study, the cause of the deterioration, had not yet been clearly identified.

* Orthorhombic structure: In a rectangular prism, the three axes all have different lengths.

** Cubic structure: In a rectangular prism, the lengths of all three axes are the same.

The joint KIST-UC Berkeley research team used a supercomputer and quantum mechanical theory (***Density Functional Theory) to theoretically explain the pressure-induced structural changes (phase transition) and metallization in the hybrid Perovskite solar cells. By accurately predicting the phase transition pressure, the research team found that the cubic structure becomes more favorable for organic molecules than the original orthorhombic structure under high pressure, leading to the pressure-induced phase transition. Further, the research team theoretically demonstrated that the lead atoms in the hybrid Perovskite cells interact under high pressure, leading to metallization, which turns the solar cells into conductors and causes electricity to flow through them.

***Density Functional Theory: A quantum mechanical methodology used to calculate stable electron distributions and energies in materials.

The KIST-UC Berkeley is the first research team that has been able to identify the cause of the performance deterioration in hybrid Perovskite solar cells under external pressure. Dr. Jung-hoon Lee of the KIST is currently following up on the research by developing materials optimized for hybrid Perovskite solar cells. In particular, Dr. Lee is researching organic molecules that their stabilities are insensitive to different inorganic structures, and is looking for a replacement for the lead used in the cells, which is both the cause of the metallization and a major contributor to environmental destruction. Lee’s research is expected to spur the development of next-generation solar cells that will eventually replace silicon solar cells.

“We expect that our study will provide new theoretical guidelines for the future development and optimization of high-performance hybrid Perovskite solar cells,” stated Dr. Jung-Hoon Lee of the KIST. “We hope our results contribute to establishing hybrid Perovskite solar cells as a next-generation solar cell to replace silicon solar cells.”

###

The research, backed by the Ministry of Science and ICT (MSIT), was conducted as an Institutional Research Program of the Korea Institute of Science and Technology (KIST) and was published in the latest issue of ACS Energy Letters (IF: 16.331, JCR top 1.923%), an international academic journal on energy and materials.

Media Contact
Kim, Do-Hyun
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsenergylett.0c00772

Tags: Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.