• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Ketamine acts fast to treat depression and its effects last — but how?

Bioengineer by Bioengineer
June 21, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In contrast to most antidepressant medications, which can take several weeks to reduce depressive symptoms, ketamine — a commonly used veterinary anesthetic — can lift a person out of a deep depression within minutes of its administration, and its effects can last several weeks. Researchers have long-wondered how ketamine can both act quickly and be so long-lasting.

Now, researchers led by Mark Rasenick, distinguished professor of physiology and psychiatry in the University of Illinois at Chicago College of Medicine, describe the molecular mechanisms behind ketamine's ability to squash depression and keep it at bay. They report their findings in the journal Molecular Psychiatry.

Two-thirds of participants in clinical studies who did not respond to traditional antidepressants experienced fast and lasting resolution of their depressive symptoms after being given ketamine intravenously, Rasenick explained. The effects of ketamine typically lasted about a week — much longer than would be expected with ketamine's six-hour half-life in the body.

Rasenick and his colleagues used a cellular model system to investigate how ketamine acted.

In previous research, Rasenick and his colleagues showed that SSRIs — the most commonly prescribed class of antidepressants, which includes Prozac and Zoloft — work in the brain by moving molecules called G proteins off of "lipid rafts" on the cell membrane, where the G proteins are held inactive. G proteins produce cyclic AMP, which nerve cells need to signal properly. People with depression, Rasenick found, tend to have a greater proportion of their G proteins packed into these membrane patches, along with dampened brain cell signaling, which may contribute to symptoms of depression, including a feeling of overall numbness.

In the earlier research, when Rasenick exposed rat brain cells to SSRIs, the drug accumulated in the lipid rafts, and G proteins moved out of the rafts. The movement was gradual, over the span of several days, which Rasenick thinks is the reason why SSRIs and most other antidepressants can take a long time to begin working.

In his current research, Rasenick and his colleagues performed a similar experiment with ketamine and noticed that the G proteins left the rafts much faster. G proteins began migrating out of the lipid rafts within 15 minutes. And the long-lasting effects of ketamine may be due to the fact that the G proteins were very slow to move back into the lipid rafts, Rasenick explained.

The finding contradicts the long-held idea that ketamine works solely by blocking a cellular receptor called the NMDA receptor, which sits on the surface of nerve cells and helps transmit signals.

In fact, when the researchers knocked out the NMDA receptor, ketamine still had the same effect on the cells — quickly moving G proteins out of lipid rafts on the cell membrane.

"When G proteins move out of the lipid rafts, it allows for better communication among brain cells, which is known to help alleviate some of the symptoms of depression," Rasenick said. "Whether they are moved out by traditional antidepressants or ketamine, it doesn't matter, although with ketamine, the G proteins are very slow to move back into the lipid rafts, which would explain the drugs long-term effects on depressive symptoms."

"This further illustrates that the movement of G proteins out of lipid rafts is a true biomarker of the efficacy of antidepressants, regardless of how they work," Rasenick explained. "It confirms that our cell model is a useful tool for showing the effect of potential new antidepressant drug candidates on the movement of G proteins and the possible efficacy of these drugs in treating depression."

###

Nathan Wray, Jeffrey Schappi, Harinder Singh and Nicholas Senese of the University of Illinois at Chicago are co-authors on the paper.

This research was supported by VA Merit Award BX00149, and grants R01AT 0009169 and T32 MH067631 from the National Institutes of Health.

Media Contact

Sharon Parmet
[email protected]
312-413-2695
@uicnews

http://www.uic.edu

http://dx.doi.org/10.1038/s41380-018-0083-8

Share12Tweet7Share2ShareShareShare1

Related Posts

The two strategies that mutant measles viruses use to infect the brain

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023
Ólafsdóttir & Lind

Testing a immunological drug as a new treatment for early type 1 diabetes

January 27, 2023

Study shows FDA-approved TB regimen may not work against the deadliest form of TB due to multidrug-resistant strains

January 27, 2023

Non-invasive neurotechnology reduces symptoms of insomnia and improves autonomic nervous system function

January 27, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In