• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Keren Bergman wins $4.8M DARPA grant

Bioengineer by Bioengineer
September 20, 2019
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Grant supports the development of a new class of on-chip optical interconnects that scale performance without increasing energy costs

IMAGE

Credit: Barbara Alper/Columbia Engineering

Grant supports the development of a new class of on-chip optical interconnects that scale performance without increasing energy costs.

Computing systems today, from embedded networks to high performance supercomputers, increasingly run the risk of being overwhelmed by their off-chip communications. That’s because even as technological advances have exponentially accelerated high performance computation on-chip, off-chip bottlenecks have emerged over electronic interconnects to other processors, memory, and accelerators. The resulting massive uptick in energy consumption is causing chips to hit their maximum power and temperature usage–the so-called “power wall”–that’s become a major obstacle to increased performance overall.

A team led by Keren Bergman, Charles Batchelor Professor of Electrical Engineering, has won a $4.8M, 3.5 year grant from DARPA to create a new class of optical interconnects integrated directly on-chip that are capable of “feeding” and “extracting” ultra-high communications bandwidths from the computer chips to anywhere in the system with extreme energy efficiencies. These photonic interconnects will enable a new generation of systems to scale performance without increasing energy costs. Bergman is working with Columbia Engineering Professors Michal Lipson and Alex Gaeta, together with collaborators from Cornell and JASR Systems, to develop on-chip integrated photonic devices for interconnects that consume 100 times less energy than today’s communication systems while delivering 100 times more communication bandwidths between computing nodes.

“The challenges of opening up this bottleneck in computing systems are especially difficult for the growing data analytics applications in AI and machine learning,” says Bergman, who, as director of Columbia’s Lightwave Research Laboratory, leads multiple research programs on optical interconnection networks for advanced computing systems, data centers, optical switching, and nanophotonic networks-on-chip for embedded systems.

“The movement of communication data is controlled by high energy costs and limited ‘chip-escape’ bandwidth densities, and is, we believe, the singular roadblock to the scalability of these systems,” Bergman added. “We expect our work will break the boundaries on the available communications capabilities of computing today and create a deeply embedded optical connectivity that could revolutionize the computing systems of tomorrow.”

For the project–“Embedded Photonics ultra-bandwidth dense optical interconnect (EmPho)”–the team is developing on-chip integrated photonic interconnects with extreme bandwidth densities per unit area that can scale to deliver petabit-per-second “chip escape” communications while minimizing energy consumption to 100 femtoJoules/bit. The work builds upon the team’s innovative comb frequency laser sources, electronic/photonic dense integration, and a new generation of silicon photonics that is resilient in the face of thermal and fabrication variations.

Bergman’s project is part of the new DARPA PIPES program (Photonics in the Package for Extreme Scalability) that seeks to enable future system scalability by developing high-bandwidth optical signaling technologies for digital microelectronics. Working across three technical areas, PIPES aims to develop and embed integrated optical transceiver capabilities into cutting-edge MCMs and create advanced optical packaging and switching technologies to address the data movement demands of highly parallel systems. The efficient, high-bandwidth, package-level photonic signaling developed through PIPES will be important to a number of emerging applications for both the commercial and defense sectors.

###

Media Contact
Holly Evarts
[email protected]

Original Source

https://engineering.columbia.edu/news/keren-bergman-darpa-grant

Tags: Electrical Engineering/ElectronicsOpticsTechnology/Engineering/Computer Science
Share14Tweet9Share3ShareShareShare2

Related Posts

blank

Cosmic Mystery: Unraveling the Enigmatic Black Hole Phenomenon

July 31, 2025
blank

New dual-mode optical imaging system provides a noninvasive breakthrough in skin cancer diagnosis

July 31, 2025

Innovative Technique Unveiled for Neutrino Detection

July 31, 2025

Engineered Enzyme Enables Precise Construction of Complex Molecules

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    35 shares
    Share 14 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Interbreeding Intervention Reduces Harmful Mutations in Florida Panthers, Researchers Find

Global Wood Fuel Production: Estimates and Implications

HDAC6 Inhibition Impacts Fumarate Hydratase, Mitochondria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.