• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Keren Bergman wins $4.8M DARPA grant

Bioengineer by Bioengineer
September 20, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Grant supports the development of a new class of on-chip optical interconnects that scale performance without increasing energy costs

IMAGE

Credit: Barbara Alper/Columbia Engineering

Grant supports the development of a new class of on-chip optical interconnects that scale performance without increasing energy costs.

Computing systems today, from embedded networks to high performance supercomputers, increasingly run the risk of being overwhelmed by their off-chip communications. That’s because even as technological advances have exponentially accelerated high performance computation on-chip, off-chip bottlenecks have emerged over electronic interconnects to other processors, memory, and accelerators. The resulting massive uptick in energy consumption is causing chips to hit their maximum power and temperature usage–the so-called “power wall”–that’s become a major obstacle to increased performance overall.

A team led by Keren Bergman, Charles Batchelor Professor of Electrical Engineering, has won a $4.8M, 3.5 year grant from DARPA to create a new class of optical interconnects integrated directly on-chip that are capable of “feeding” and “extracting” ultra-high communications bandwidths from the computer chips to anywhere in the system with extreme energy efficiencies. These photonic interconnects will enable a new generation of systems to scale performance without increasing energy costs. Bergman is working with Columbia Engineering Professors Michal Lipson and Alex Gaeta, together with collaborators from Cornell and JASR Systems, to develop on-chip integrated photonic devices for interconnects that consume 100 times less energy than today’s communication systems while delivering 100 times more communication bandwidths between computing nodes.

“The challenges of opening up this bottleneck in computing systems are especially difficult for the growing data analytics applications in AI and machine learning,” says Bergman, who, as director of Columbia’s Lightwave Research Laboratory, leads multiple research programs on optical interconnection networks for advanced computing systems, data centers, optical switching, and nanophotonic networks-on-chip for embedded systems.

“The movement of communication data is controlled by high energy costs and limited ‘chip-escape’ bandwidth densities, and is, we believe, the singular roadblock to the scalability of these systems,” Bergman added. “We expect our work will break the boundaries on the available communications capabilities of computing today and create a deeply embedded optical connectivity that could revolutionize the computing systems of tomorrow.”

For the project–“Embedded Photonics ultra-bandwidth dense optical interconnect (EmPho)”–the team is developing on-chip integrated photonic interconnects with extreme bandwidth densities per unit area that can scale to deliver petabit-per-second “chip escape” communications while minimizing energy consumption to 100 femtoJoules/bit. The work builds upon the team’s innovative comb frequency laser sources, electronic/photonic dense integration, and a new generation of silicon photonics that is resilient in the face of thermal and fabrication variations.

Bergman’s project is part of the new DARPA PIPES program (Photonics in the Package for Extreme Scalability) that seeks to enable future system scalability by developing high-bandwidth optical signaling technologies for digital microelectronics. Working across three technical areas, PIPES aims to develop and embed integrated optical transceiver capabilities into cutting-edge MCMs and create advanced optical packaging and switching technologies to address the data movement demands of highly parallel systems. The efficient, high-bandwidth, package-level photonic signaling developed through PIPES will be important to a number of emerging applications for both the commercial and defense sectors.

###

Media Contact
Holly Evarts
[email protected]

Original Source

https://engineering.columbia.edu/news/keren-bergman-darpa-grant

Tags: Electrical Engineering/ElectronicsOpticsTechnology/Engineering/Computer Science
Share14Tweet9Share3ShareShareShare2

Related Posts

blank

Scientists Pioneer Innovative Method for Precise Experimental Measurement of the Unruh Effect

September 11, 2025
Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

September 11, 2025

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Tool Automates Cell Identification in Complex Datasets

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.