Neanderthals introduced solid food in their children’s diet at around 5-6 months of age
Credit: ERC project SUCCESS, University of Bologna, Italy
FRANKFURT/KENT/BOLOGNA/FERRARA. Teeth grow and register information in form of growth lines, akin to tree rings, that can be read through histological techniques. Combining such information with chemical data obtained with a laser-mass spectrometer, in particular strontium concentrations, the scientists were able to show that these Neanderthals introduced solid food in their children’s diet at around 5-6 months of age.
Not cultural but physiological
Alessia Nava (University of Kent, UK), co-first author of the work, says: “The beginning of weaning relates to physiology rather than to cultural factors. In modern humans, in fact, the first introduction of solid food occurs at around 6 months of age when the child needs a more energetic food supply, and it is shared by very different cultures and societies. Now, we know that also Neanderthals started to wean their children when modern humans do”.
“In particular, compared to other primates” says Federico Lugli (University of Bologna), co-first author of the work “it is highly conceivable that the high energy demand of the growing human brain triggers the early introduction of solid foods in child diet”.
Neanderthals are our closest cousins within the human evolutionary tree. However, their pace of growth and early life metabolic constraints are still highly debated within the scientific literature.
Stefano Benazzi (University of Bologna), co-senior author, says: “This work’s results imply similar energy demands during early infancy and a close pace of growth between Homo sapiens and Neanderthals. Taken together, these factors possibly suggest that Neanderthal newborns were of similar weight to modern human neonates, pointing to a likely similar gestational history and early-life ontogeny, and potentially shorter inter-birth interval”.
Home, sweet home
Other than their early diet and growth, scientists also collected data on the regional mobility of these Neanderthals using time-resolved strontium isotope analyses.
“They were less mobile than previously suggested by other scholars” says Wolfgang Müller (Goethe University Frankfurt), co-senior author “the strontium isotope signature registered in their teeth indicates in fact that they have spent most of the time close to their home: this reflects a very modern mental template and a likely thoughtful use of local resources”.
“Despite the general cooling during the period of interest, Northeastern Italy has almost always been a place rich in food, ecological variability and caves, ultimately explaining survival of Neanderthals in this region till about 45,000 years ago” says Marco Peresani (University of Ferrara), co-senior author and responsible for findings from archaeological excavations at sites of De Nadale and Fumane.
This research adds a new piece in the puzzling pictures of Neanderthal, a human species so close to us but still so enigmatic. Specifically, researchers exclude that the Neanderthal small population size, derived in earlier genetic analyses, was driven by differences in weaning age, and that other biocultural factors led to their demise. This will be further investigated within the framework of the ERC project SUCCESS (‘The Earliest Migration of Homo sapiens in Southern Europe – Understanding the biocultural processes that define our uniqueness’), led by Stefano Benazzi at University of Bologna.
###
Picture downloads:
1. Fumane Cave near Verona (Wikipedia): This is where several of the milk teeth of Neanderthal children investigated by Professor Wolfgang Müller at Goethe University were found.
https:/
2. Neanderthal milk teeth: Presumably a Neanderthal child lost this tooth 40,000 to 70,000 year ago when his or her permanent teeth came in. Credit: ERC project SUCCESS, University of Bologna, Italy
http://www.
3. Ultra-thin cut: Researchers at Goethe University cut paper-thin slices off of a Neanderthal milk tooth. The teeth are subsequently put back together and reconstructed. Credit/video still: Luca Bondioli and Alessia Nava, Rome, Italy
http://www.
Further information:
Alessia Nava: [email protected]
Federico Lugli: [email protected]
Marco Peresani: [email protected]
Wolfgang Müller: [email protected]
Stefano Benazzi: [email protected]
Grants involved
Fellowship from Marie Sk?odowska-Curie Actions European Commission H2020-MSCA-IF-2018-842812 (Alessia Nava)
H2020 ERC grant 724046 – SUCCESS (Stefano Benazzi)
Wilhelm and Else Heraeus Foundation and Deutsche Forschungsgemeinschaft – DFG, INST 161/921-1 FUGG and INST 161/923-1 FUGG (Wolfgang Müller)
H2020 ERC grant 639286 – HIDDEN FOODS (Emanuela Cristiani)
Current news about science, teaching, and society can be found on GOETHE-UNI online (http://www.
Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a “foundation university”. Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: http://www.
Publisher: The President of Goethe University Editor: Dr. Markus Bernards, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531, [email protected].
Media Contact
Alessia Nava
[email protected]
Original Source
https:/
Related Journal Article
http://dx.