• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Joshua trees facing extinction

Bioengineer by Bioengineer
July 16, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nicholas Graver / NPS

They outlived mammoths and saber-toothed tigers. But without dramatic action to reduce climate change, new research shows Joshua trees won’t survive much past this century.

UC Riverside scientists wanted to verify earlier studies predicting global warming’s deadly effect on the namesake trees that millions flock to see every year in Joshua Tree National Park. They also wanted to learn whether the trees are already in trouble.

Using multiple methods, the study arrived at several possible outcomes. In the best-case scenario, major efforts to reduce heat-trapping gasses in the atmosphere would save 19 percent of the tree habitat after the year 2070. In the worst case, with no reduction in carbon emissions, the park would retain a mere 0.02 percent of its Joshua tree habitat.

The team’s findings were published recently in Ecosphere. Project lead Lynn Sweet, a UCR plant ecologist, said she hopes the study inspires people to take protective environmental action. “The fate of these unusual, amazing trees is in all of our hands,” she said. “Their numbers will decline, but how much depends on us.”

To answer their questions about whether climate change is already having an effect, a large group of volunteers helped the team gather data about more than 4,000 trees.

They found that Joshua trees have been migrating to higher elevation parts of the park with cooler weather and more moisture in the ground. In hotter, drier areas, the adult trees aren’t producing as many younger plants, and the ones they do produce aren’t surviving.

Joshua trees as a species have existed since the Pleistocene era, about 2.5 million years ago, and individual trees can live up to 300 years. One of the ways adult trees survive so long is by storing large reserves of water to weather droughts.

Younger trees and seedlings aren’t capable of holding reserves in this way though, and the most recent, 376-week-long drought in California left the ground in some places without enough water to support new young plants. As the climate changes, long periods of drought are likely to occur with more frequency, leading to issues with the trees like those already observed.

An additional finding of this study is that in the cooler, wetter parts of the park the biggest threat other than climate change is fire. Fewer than 10 percent of Joshua trees survive wildfires, which have been exacerbated in recent years by smog from car and industrial exhaust. The smog deposits nitrogen on the ground, which in turn feeds non-native grasses that act as kindling for wildfires.

As a partner on this project, the U.S. Park Service is using this information to mitigate fire risk by removing the invasive plants.

“Fires are just as much a threat to the trees as climate change, and removing grasses is a way park rangers are helping to protect the area today,” Sweet said. “By protecting the trees, they’re protecting a host of other native insects and animals that depend on them as well.”

UCR animal ecologist and paper co-author Cameron Barrows conducted a similar research project in 2012, which also found Joshua tree populations would decline, based on models assuming a temperature rise of three degrees. However, this newer study considered a climate change scenario using twice as many variables, including soil-water estimates, rainfall, soil types, and more. In addition, Barrows said on-the-ground observations were essential to verifying the climate models this newer team had constructed.

Quoting the statistician George Box, Barrows said, “All models are wrong, but some are useful.” Barrows went on to say, “Here, the data we collected outdoors showed us where our models gave us the most informative glimpse into the future of the park.”

For this study, the UC Riverside Center for Conservation Biology partnered with Earthwatch Institute to recruit the volunteer scientists. Barrows and Sweet both recommend joining such organizations as a way to help find solutions to the park’s problems.

“I hope members of the public read this and think, ‘Someone like me could volunteer to help scientists get the kind of data that might lend itself to concrete, protective actions,'” Barrows said.

###

Media Contact
Jules Bernstein
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/ecs2.2763

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEarth ScienceForestryGeology/SoilPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Membrane Remodeling Driven by Endocytic TPLATE Scaffold

November 12, 2025
blank

Unraveling Melanism in Indian Leopards: A Genomic Study

November 12, 2025

Immune Gene Expression Patterns in Acute Stroke Unveiled

November 12, 2025

Bees Master Simple ‘Morse Code’ for Reading: New Scientific Discovery

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Membrane Remodeling Driven by Endocytic TPLATE Scaffold

Colloidal Nano Silica’s Impact on Cement Solidification

Reevaluating Proteinuria as a Key Endpoint in IgA Nephropathy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.