• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 1, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

JNK protein triggers nerve cells to withdraw their synapses when stressed

Bioengineer by Bioengineer
March 11, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Turku Bioscience


New study from Eleanor Coffey’s lab at Turku Bioscience Centre in Finland identifies that the JNK protein triggers nerve cells to withdraw their synapses when stressed.

Synapses are tiny cell protrusions where electrochemical impulses pass between nerves. Prolonged stress in the brain causes synapse withdrawal and maladaptive changes to circuits that are linked to the development of major depressive disorder.

Postdoctoral Researcher Patrik Hollós and colleagues used a light-activated optogenetic tool to switch off the activity of a protein called JNK specifically in synapses.

– Using a light beam to inhibit the JNK protein prevented synapses from shrinking in response to stress. Specifically the internalisation of a receptor called “AMPAR”, an early event in synapse disassembly, was blocked, explains Hollós.

JNK Is a Stress Sensor in Synapses and May Elicit the Effects of Ketamine

Researchers also found that the novel, fast-acting anti-depressant ketamine inhibited the JNK protein while preventing synapse retraction.

– These results show that the JNK protein is a stress sensor in synapses. When activated, it triggers the disassembly of synapse machinery followed by rapid synapse regression. Conversely, inhibiting the JNK protein makes synapses able to withstand chronic endocrine stress. This may be relevant for conditions where hormonal stress leads to synapse elimination but also to control synapse number under normal homeostatic conditions, says team leader Eleanor Coffey.

These findings help us to understand how stress dismantles synapses, and provides clues for novel targeted therapies.

###

The study was published as a research highlight in the open access journal of the Society for Neuroscience, eNeuro.

Research was conducted at Turku Bioscience Centre a joint research facility of the University of Turku and Åbo Akademi University.

Media Contact
Eleanor Coffey
[email protected]

Original Source

https://www.utu.fi/en/news/press-release/jnk-protein-triggers-nerve-cells-to-withdraw-their-synapses-when-stressed

Related Journal Article

http://dx.doi.org/10.1523/ENEURO.0303-19.2019

Tags: BiochemistryBiologyMedicine/HealthMolecular BiologyneurobiologyNeurochemistryPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Preterm Birth’s Impact on Childhood Psychomotor Skills

January 1, 2026

Bioavailable Testosterone Lowers Lung Squamous Cell Carcinoma Risk

January 1, 2026

Case Report: Thrombocytopenia After PD-1 Therapy in SCLC

January 1, 2026

Enhancing Manual Wheelchair Training for Chronic Conditions

January 1, 2026
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    107 shares
    Share 43 Tweet 27
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Model-Free Optical Processors Learn via Proximal Policy Optimization

Preterm Birth’s Impact on Childhood Psychomotor Skills

Bioavailable Testosterone Lowers Lung Squamous Cell Carcinoma Risk

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.